272 research outputs found

    Low density approach to the Kondo-lattice model

    Full text link
    We propose a new approach to the (ferromagnetic) Kondo-lattice model in the low density region, where the model is thought to give a reasonable frame work for manganites with perovskite structure exhibiting the "colossal magnetoresistance" -effect. Results for the temperature- dependent quasiparticle density of states are presented. Typical features can be interpreted in terms of elementary spin-exchange processes between itinerant conduction electrons and localized moments. The approach is exact in the zero bandwidth limit for all temperatures and at T=0 for arbitrary bandwidths, fulfills exact high-energy expansions and reproduces correctly second order perturbation theory in the exchange coupling.Comment: 11 pages, 7 figures, accepted by PR

    Microwave Assisted Processing Of Zr-Doped CaCu3Ti4O12 Electroceramics

    Get PDF
    Penyediaan CaCu3Ti4O12 tulen dan yang didop dengan ZrO2 telah disediakan dengan kaedah tindak balas keadaan pepejal dan pemprosesan gelombang mikro. Bahan mentah Ca(OH)2, CuO, TiO2 dan ZrO2 telah dikisar, dikalsin, dibentuk dan akhirnya disinter. Preparation of pure CaCu3Ti4O12 and ZrO2 doped CaCu3Ti4O12 have by been done by solid state reaction and microwave processing. Starting materials, Ca(OH)2, CuO, TiO2 and ZrO2 are subsequently milled, calcined, compacted and sintered

    Cova de Can Sadurní, la transformació d’un jaciment. L’episodi sepulcral del neolític postcardial

    Get PDF
    The present study deals with the structural characterization and classification of the novel compounds <b>1</b>–<b>8</b> into perovskite subclasses and proceeds in extracting the structure–band gap relationships between them. The compounds were obtained from the employment of small, 3–5-atom-wide organic ammonium ions seeking to discover new perovskite-like compounds. The compounds reported here adopt unique or rare structure types akin to the prototype structure perovskite. When trimethylammonium (TMA) was employed, we obtained TMASnI<sub>3</sub> (<b>1</b>), which is our reference compound for a “perovskitoid” structure of face-sharing octahedra. The compounds EASnI<sub>3</sub> (<b>2b</b>), GASnI<sub>3</sub> (<b>3a</b>), ACASnI<sub>3</sub> (<b>4</b>), and IMSnI<sub>3</sub> (<b>5</b>) obtained from the use of ethylammonium (EA), guanidinium (GA), acetamidinium (ACA), and imidazolium (IM) cations, respectively, represent the first entries of the so-called “hexagonal perovskite polytypes” in the hybrid halide perovskite library. The hexagonal perovskites define a new family of hybrid halide perovskites with a crystal structure that emerges from a blend of corner- and face-sharing octahedral connections in various proportions. The small organic cations can also stabilize a second structural type characterized by a crystal lattice with reduced dimensionality. These compounds include the two-dimensional (2D) perovskites GA<sub>2</sub>SnI<sub>4</sub> (<b>3b</b>) and IPA<sub>3</sub>Sn<sub>2</sub>I<sub>7</sub> (<b>6b</b>) and the one-dimensional (1D) perovskite IPA<sub>3</sub>SnI<sub>5</sub> (<b>6a</b>). The known 2D perovskite BA<sub>2</sub>MASn<sub>2</sub>I<sub>7</sub> (<b>7</b>) and the related all-inorganic 1D perovskite “RbSnF<sub>2</sub>I” (<b>8</b>) have also been synthesized. All compounds have been identified as medium-to-wide-band-gap semiconductors in the range of <i>E</i><sub>g</sub> = 1.90–2.40 eV, with the band gap progressively decreasing with increased corner-sharing functionality and increased torsion angle in the octahedral connectivity

    Ultrasound-Driven Fabrication of Nanosized High-Entropy Materials for Heterogeneous Catalysis

    Get PDF
    High-entropy materials (HEMs) have emerged as a new class of multi-principal-element materials with great technological prospects. As a unique class of concentrated solid-solution materials, HEMs, formed on the premise of incorporating five or more principal elements into a single crystalline phase, provide an excellent opportunity to access superior catalytic materials ‘hiding’ in the unexplored central regions of a multicomponent phase space of higher orders. However, the fabrication of HEMs is energy-intensive, typically requiring extreme temperatures and/or pressures under which agglomeration of particles occurs with a commensurate decrease in surface area. For most catalytic applications, non-agglomerated particles with high surface areas are preferred. Accessing nanostructured HEMs with an increased surface area has motivated efforts to explore unconventional synthesis strategies. On the other hand, ultrasound can be used to drive high-energy chemical reactions via the physical process of acoustic cavitation that provides a unique high-energy environment at such magnitude and time scale that is unattainable with conventional energy sources. Our overarching goal is to exploit this unique high-energy environment toward the synthesis of nanostructured HEM as an emerging new class of catalytic materials. Taking advantage of the acoustic cavitation phenomenon, nanostructured particles of various subclasses of HEMs, including high-entropy fluorite oxides (HEFOs), high-entropy perovskite oxides (HEPOs), and high-entropy alloys (HEAs) were fabricated at seemingly room temperature conditions in the present study. Several characterization techniques were used to understand the crystalline structure, chemical composition, surface chemistry, and textural features of the fabricated nanocatalysts. Their catalytic performances were assessed towards carbon monoxide (CO) oxidation and/or selective phenol hydrogenation. Such a technologically feasible, facile, and scalable synthetic strategy holds great promise towards the synthesis of nanocrystalline materials for different applications

    Exsolution-enhanced reverse water-gas shift chemical looping activity of Sr2FeMo0.6Ni0.4O6-δ double perovskite

    Get PDF
    This study investigates the structural evolution and redox characteristics of the double perovskite Sr2FeMo0.6Ni0.4O6-delta (SFMN) during hydrogen (H2) and carbon dioxide (CO2) redox cycles and explores the material performance in the Reverse Water-Gas Shift Chemical Looping (RWGS-CL) reaction. In-situ and ex-situ X-Ray Diffraction (XRD) and High-Resolution Transmission Electron Microscopy (HRTEM) studies reveal that H2 reduction at temperatures above 800 degrees C leads to the exsolution of bimetallic Ni-Fe alloy particles and the formation of a Ruddlesden-Popper (RP) phase. A core-shell structure with Ni-Fe core and a perovskite oxide shell is formed with subsequent redox cycles, and the resulting material exhibits better performance and high stability in the RWGS-CL process. Thermogravimetric (TGA) and Temperature Programmed Reduction (TPR) and Oxidation (TPO) analyses show that the optimal reduction and oxidation temperatures for maximizing the CO yield are around 850 degrees C and 750 degrees C respectively, and that the cycled material is able to work steadily under isothermal conditions at 850 degrees C

    Exsolution-enhanced reverse water-gas shift chemical looping activity of Sr2FeMo0.6Ni0.4O6-δ double perovskite

    Get PDF
    This study investigates the structural evolution and redox characteristics of the double perovskite Sr2FeMo0.6Ni0.4O6-δ (SFMN) during hydrogen (H2) and carbon dioxide (CO2) redox cycles and explores the material performance in the Reverse Water-Gas Shift Chemical Looping (RWGS-CL) reaction. In-situ and ex-situ X-Ray Diffraction (XRD) and High-Resolution Transmission Electron Microscopy (HRTEM) studies reveal that H2 reduction at temperatures above 800 °C leads to the exsolution of bimetallic Ni-Fe alloy particles and the formation of a Ruddlesden-Popper (RP) phase. A core–shell structure with Ni-Fe core and a perovskite oxide shell is formed with subsequent redox cycles, and the resulting material exhibits better performance and high stability in the RWGS-CL process. Thermogravimetric (TGA) and Temperature Programmed Reduction (TPR) and Oxidation (TPO) analyses show that the optimal reduction and oxidation temperatures for maximizing the CO yield are around 850 °C and 750 °C respectively, and that the cycled material is able to work steadily under isothermal conditions at 850 °C
    corecore