836,309 research outputs found
Nondestructive assessment of penetration of electron-beam welds
Empirical method correlates penetration of an electron-beam weld with external measurements of the weld. Empirical polygon accurately confirms full-penetration welds while a second, larger polygon provides for penetration of welds near the tip
Calculation of the effect of random superfluid density on the temperature dependence of the penetration depth
Microscopic variations in composition or structure can lead to nanoscale
inhomogeneity in superconducting properties such as the magnetic penetration
depth, but measurements of these properties are usually made on longer length
scales. We solve a generalized London equation with a non-uniform penetration
depth, lambda(r), obtaining an approximate solution for the disorder-averaged
Meissner effect. We find that the effective penetration depth is different from
the average penetration depth and is sensitive to the details of the disorder.
These results indicate the need for caution when interpreting measurements of
the penetration depth and its temperature dependence in systems which may be
inhomogeneous
Sand Penetration: A Near Nose Investigation of a Sand Penetration Event
This paper presents experimental and computational results of a long-rod penetrating dry granular sand at velocities near 100 m/s. The objective of this work is to develop a fundamental understanding of the formation and transmission of dynamic force chains, and the motion and fracture of the individual sand grains as the projectile passes. This is accomplished by launching a projectile along a view window, backed by sand, in order to directly view and photograph the projectile/sand interactions. Within the sand system, a two-wave structure was observed, composed of a compaction wave (bow shock) that detaches from the dart and moves through the sand at a wave speed near 100 m/s and a damage wave, which remains near the leading edge of the dart. The compaction wave removes porosity and the damage wave fractures grains in the region near the projectile nose. Grain fracture is not observed at dart speeds below 35 m/s. In addition the axial strain to failure of individual sand grains was measured in a quasi-static configuration. These results were used in conjunction with a simple analytic force balance model to predict the depth of penetration. The analytic results compare favourably with experiments until the dart slows below 35 m/s
Suppression of surface barrier in superconductors by columnar defects
We investigate the influence of columnar defects in layered superconductors
on the thermally activated penetration of pancake vortices through the surface
barrier. Columnar defects, located near the surface, facilitate penetration of
vortices through the surface barrier, by creating ``weak spots'', through which
pancakes can penetrate into the superconductor. Penetration of a pancake
mediated by an isolated column, located near the surface, is a two-stage
process involving hopping from the surface to the column and the detachment
from the column into the bulk; each stage is controlled by its own activation
barrier. The resulting effective energy is equal to the maximum of those two
barriers. For a given external field there exists an optimum location of the
column for which the barriers for the both processes are equal and the
reduction of the effective penetration barrier is maximal. At high fields the
effective penetration field is approximately two times smaller than in
unirradiated samples. We also estimate the suppression of the effective
penetration field by column clusters. This mechanism provides further reduction
of the penetration field at low temperatures.Comment: 8 pages, 9 figures, submitted to Phys. Rev.
Naïve Realism and the Cognitive Penetrability of Perception
Perceptual experience has representational content. My argument for this claim is an inference to the best explanation. The explanandum is cognitive penetration. In cognitive penetration, perceptual experiences are either causally influenced, or else are partially constituted, by mental states that are representational, including: mental imagery, beliefs, concepts and memories. If perceptual experiences have representational content, then there is a background condition for cognitive penetration that renders the phenomenon prima facie intelligible. Naïve realist or purely relational accounts of perception leave cognitive penetration less well-explained, even when formulated with so-called ‘standpoints’ or ‘third relata.
Cognitive Penetration and Attention
Zenon Pylyshyn argues that cognitively driven attentional effects do not amount to cognitive penetration of early vision because such effects occur either before or after early vision. Critics object that in fact such effects occur at all levels of perceptual processing. We argue that Pylyshyn’s claim is correct—but not for the reason he emphasizes. Even if his critics are correct that attentional effects are not external to early vision, these effects do not satisfy Pylyshyn’s requirements that the effects be direct and exhibit semantic coherence. In addition, we distinguish our defense from those found in recent work by Raftopoulos and by Firestone and Scholl, argue that attention should not be assimilated to expectation, and discuss alternative characterizations of cognitive penetrability, advocating a kind of pluralism
- …