43,447 research outputs found
Is the Oral Microbiome Important in HIV-Associated Inflammation?
Alterations in the gut microbiome during HIV infection have been implicated in chronic inflammation, but the role of the oral microbiome in this process is less clear. The article by M. K. Annavajhala, S. D. Khan, S. B. Sullivan, J. Shah, et al. (mSphere 5:e00798-19, 2020, https://doi.org/10.1128/mSphere.00798-19) investigated the relationship between oral and gut microbiome diversity and immune activation in patients with HIV on antiretroviral therapy. In this study, oral microbiome diversity was inversely associated with inflammatory markers such as soluble CD14 (sCD14), but surprisingly similar associations were not seen with gut microbiome diversity. Oral microbiome diversity was also associated with periodontitis in these patients. This study highlights the importance of continuing multisite examinations in studying the gastrointestinal tract microbiome and also stimulates important directions for future research defining the role of the oral-gut axis in HIV-associated inflammation
Recommended from our members
Patterns of Oral Microbiota Diversity in Adults and Children: A Crowdsourced Population Study.
Oral microbiome dysbiosis has been associated with various local and systemic human diseases such as dental caries, periodontal disease, obesity, and cardiovascular disease. Bacterial composition may be affected by age, oral health, diet, and geography, although information about the natural variation found in the general public is still lacking. In this study, citizen-scientists used a crowdsourcing model to obtain oral bacterial composition data from guests at the Denver Museum of Nature & Science to determine if previously suspected oral microbiome associations with an individual's demographics, lifestyle, and/or genetics are robust and generalizable enough to be detected within a general population. Consistent with past research, we found bacterial composition to be more diverse in youth microbiomes when compared to adults. Adult oral microbiomes were predominantly impacted by oral health habits, while youth microbiomes were impacted by biological sex and weight status. The oral pathogen Treponema was detected more commonly in adults without recent dentist visits and in obese youth. Additionally, oral microbiomes from participants of the same family were more similar to each other than to oral microbiomes from non-related individuals. These results suggest that previously reported oral microbiome associations are observable in a human population containing the natural variation commonly found in the general public. Furthermore, these results support the use of crowdsourced data as a valid methodology to obtain community-based microbiome data
The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information
The human oral microbiome is the most studied human microflora, but 53% of the species have not yet been validly named and 35% remain uncultivated. The uncultivated taxa are known primarily from 16S rRNA sequence information. Sequence information tied solely to obscure isolate or clone numbers, and usually lacking accurate phylogenetic placement, is a major impediment to working with human oral microbiome data. The goal of creating the Human Oral Microbiome Database (HOMD) is to provide the scientific community with a body site-specific comprehensive database for the more than 600 prokaryote species that are present in the human oral cavity based on a curated 16S rRNA gene-based provisional naming scheme. Currently, two primary types of information are provided in HOMD—taxonomic and genomic. Named oral species and taxa identified from 16S rRNA gene sequence analysis of oral isolates and cloning studies were placed into defined 16S rRNA phylotypes and each given unique Human Oral Taxon (HOT) number. The HOT interlinks phenotypic, phylogenetic, genomic, clinical and bibliographic information for each taxon. A BLAST search tool is provided to match user 16S rRNA gene sequences to a curated, full length, 16S rRNA gene reference data set. For genomic analysis, HOMD provides comprehensive set of analysis tools and maintains frequently updated annotations for all the human oral microbial genomes that have been sequenced and publicly released. Oral bacterial genome sequences, determined as part of the Human Microbiome Project, are being added to the HOMD as they become available. We provide HOMD as a conceptual model for the presentation of microbiome data for other human body sites
Fungi at the scene of the crime: innocent bystanders or accomplices in oral infections?
Purpose of Review:
Over the last decade, microbiome studies have enhanced our knowledge and understanding of the polymicrobial nature of oral infections. Recently, profiling of the fungal microbiome has expanded our conventional understanding of oral ecology, revealing the critical importance of yeasts within this complex microbiome. This review aims to explore our current appreciation of interkingdom interactions in oral disease.
Recent Findings:
There is a growing evidence base of interactions and pathogenic synergy and antagonism with bacterial species within oral disease. Recent studies have helped to develop our knowledge of how Candida albicans, alongside bacteria such as Porphyromonas gingivalis, Streptococcus mutans, Staphylococcus aureus, Enterococcus faecalis, and Lactobacillus species, influence overall pathogenicity.
Summary:
Clinical and experimental evidence makes a compelling case for a role for C. albicans in a number of oral infections, though whether its role is an active accomplice or passive bystander remains to be determined
Metagenomic analysis of dental calculus in ancient Egyptian baboons
Dental calculus, or mineralized plaque, represents a record of ancient biomolecules and food residues. Recently, ancient metagenomics made it possible to unlock the wealth of microbial and dietary information of dental calculus to reconstruct oral microbiomes and lifestyle of humans from the past. Although most studies have so far focused on ancient humans, dental calculus is known to form in a wide range of animals, potentially informing on how human-animal interactions changed the animals' oral ecology. Here, we characterise the oral microbiome of six ancient Egyptian baboons held in captivity during the late Pharaonic era (9th-6th centuries BC) and of two historical baboons from a zoo via shotgun metagenomics. We demonstrate that these captive baboons possessed a distinctive oral microbiome when compared to ancient and modern humans, Neanderthals and a wild chimpanzee. These results may reflect the omnivorous dietary behaviour of baboons, even though health, food provisioning and other factors associated with human management, may have changed the baboons' oral microbiome. We anticipate our study to be a starting point for more extensive studies on ancient animal oral microbiomes to examine the extent to which domestication and human management in the past affected the diet, health and lifestyle of target animals
Ecological Balance of Oral Microbiota is Required to Maintain Oral Mesenchymal Stem Cell Homeostasis
Oral microbiome is essential for maintenance of oral cavity health. Imbalanced oral microbiome causes periodontal and other diseases. It is unknown whether oral microbiome affect oral stem cells function. In this study, we used a common clinical anti-biotic treatment approach to alter oral microbiome ecology and examine whether oral mesenchymal stem cells (MSCs) are affected. We found that altered oral microbiome resulted gingival MSCs deficiency, leading to a delayed wound healing in male mice. Mechanistically, oral microbiome release LPS that stimulates the expression of microRNA-21 (miR-21) and then impair the normal function of gingival MSCs and wound healing process through miR-21/Sp1/TERT pathway. This is the first study indicate that interplay between oral microbiome and MSCs homeostasis in male mice
Interkingdom interactions on the denture surface: implications for oral hygiene
Background:
Evidence to support the role of Candida species in oral disease is limited. Often considered a commensal, this opportunistic yeast has been shown to play a role in denture related disease, though whether it is an active participant or innocent bystander remains to be determined. This study sought to understand the role of Candida species alongside the bacterial microbiome in a denture patient cohort, exploring how the microbiology of the denture was affected by oral hygiene practices.
Materials and methods:
In vitro denture cleansing studies were performed on a complex 9-species interkingdom denture biofilm model, with quantitative assessment of retained bacterial and fungal viable bioburdens. Patient hygiene measures were also collected from 131 patients, including OHIP, frequency of denture cleansing, oral hygiene measure and patient demographics. The bacterial microbiome was analysed from each patient, alongside quantitative PCR assessment of ITS (fungal) and 16S (bacterial) bioburden from denture, mucosa and intact dentition.
Results:
It was shown that following in vitro denture cleansing C. albicans were unresponsive to treatment, whereas bacterial biofilms could repopulate 100-fold, but were susceptible to subsequent treatment. Within the patient cohort, oral hygiene did not impact candidal or bacterial composition, nor diversity. The levels of Candida did not significantly influence the bacterial microbiome, though an observed gradient was suggestive of a microbial composition change in response to Candida load, indicating interkingdom interaction rather than an oral hygiene effect. Indeed, correlation analysis was able to show significant correlations between Candida species and key genera (Lactobacillus, Scardovia, Fusobacterium).
Conclusions:
Overall, this study has shown that the denture microbiome/mycobiome is relatively resilient to oral hygiene challenges, but that Candida species have potential interactions with key oral genera. These interactions may have a bearing on shaping community structure and a shift from health to disease when the opportunity arises
Human Skin, Oral, and Gut Microbiomes Predict Chronological Age.
Human gut microbiomes are known to change with age, yet the relative value of human microbiomes across the body as predictors of age, and prediction robustness across populations is unknown. In this study, we tested the ability of the oral, gut, and skin (hand and forehead) microbiomes to predict age in adults using random forest regression on data combined from multiple publicly available studies, evaluating the models in each cohort individually. Intriguingly, the skin microbiome provides the best prediction of age (mean ± standard deviation, 3.8 ± 0.45 years, versus 4.5 ± 0.14 years for the oral microbiome and 11.5 ± 0.12 years for the gut microbiome). This also agrees with forensic studies showing that the skin microbiome predicts postmortem interval better than microbiomes from other body sites. Age prediction models constructed from the hand microbiome generalized to the forehead and vice versa, across cohorts, and results from the gut microbiome generalized across multiple cohorts (United States, United Kingdom, and China). Interestingly, taxa enriched in young individuals (18 to 30 years) tend to be more abundant and more prevalent than taxa enriched in elderly individuals (>60 yrs), suggesting a model in which physiological aging occurs concomitantly with the loss of key taxa over a lifetime, enabling potential microbiome-targeted therapeutic strategies to prevent aging.IMPORTANCE Considerable evidence suggests that the gut microbiome changes with age or even accelerates aging in adults. Whether the age-related changes in the gut microbiome are more or less prominent than those for other body sites and whether predictions can be made about a person's age from a microbiome sample remain unknown. We therefore combined several large studies from different countries to determine which body site's microbiome could most accurately predict age. We found that the skin was the best, on average yielding predictions within 4 years of chronological age. This study sets the stage for future research on the role of the microbiome in accelerating or decelerating the aging process and in the susceptibility for age-related diseases
Oral biofilms exposure to chlorhexidine results in altered microbial composition and metabolic profile
Oral diseases (e.g., dental caries, periodontitis) are developed when the healthy oral microbiome is imbalanced allowing the increase of pathobiont strains. Common practice to prevent or treat such diseases is the use of antiseptics, like chlorhexidine. However, the impact of these antiseptics on the composition and metabolic activity of the oral microbiome is poorly addressed. Using two types of oral biofilms-a 14-species community (more controllable) and human tongue microbiota (more representative)-the impact of short-term chlorhexidine exposure was explored in-depth. In both models, oral biofilms treated with chlorhexidine exhibited a pattern of inactivation (>3 log units) and fast regrowth to the initial bacterial concentrations. Moreover, the chlorhexidine treatment induced profound shifts in microbiota composition and metabolic activity. In some cases, disease associated traits were increased (such as higher abundance of pathobiont strains or shift in high lactate production). Our results highlight the need for alternative treatments that selectively target the disease-associated bacteria in the biofilm without targeting the commensal microorganisms
- …