22,216 research outputs found
Simple yet effective: historical proximity variables improve the species distribution models for invasive giant hogweed (Heracleum mantegazzianum s.l.) in Poland
Species distribution models are scarcely applicable to invasive species because of their breaking of the models’ assumptions. So far, few mechanistic, semi-mechanistic or statistical solutions like dispersal constraints or propagule limitation have been applied. We evaluated a novel quasi-semi-mechanistic approach for regional scale models, using historical proximity variables (HPV) representing a state of the population in a given moment in the past. Our aim was to test the effects of addition of HPV sets of different minimal recentness, information capacity and the total number of variables on the quality of the species distribution model for Heracleum mantegazzianum on 116000 km2 in Poland. As environmental predictors, we used fragments of 103 1×1 km, world- wide, free-access rasters from WorldGrids.org. Single and ensemble models were computed using BIOMOD2 package 3.1.47 working in R environment 3.1.0. The addition of HPV improved the quality of single and ensemble models from poor to good and excellent. The quality was the highest for the variants with HPVs based on the distance from the most recent past occurrences. It was mostly affected by the algorithm type, but all HPV traits (minimal recentness, information capacity, model type or the number of the time periods) were significantly important determinants. The addition of HPVs improved the quality of current projections, raising the occurrence probability in regions where the species had occurred before. We conclude that HPV addition enables semi-realistic estimation of the rate of spread and can be applied to the short-term forecasting of invasive or declining species, which also break equal-dispersal probability assumptions
Agent-based modeling: a systematic assessment of use cases and requirements for enhancing pharmaceutical research and development productivity.
A crisis continues to brew within the pharmaceutical research and development (R&D) enterprise: productivity continues declining as costs rise, despite ongoing, often dramatic scientific and technical advances. To reverse this trend, we offer various suggestions for both the expansion and broader adoption of modeling and simulation (M&S) methods. We suggest strategies and scenarios intended to enable new M&S use cases that directly engage R&D knowledge generation and build actionable mechanistic insight, thereby opening the door to enhanced productivity. What M&S requirements must be satisfied to access and open the door, and begin reversing the productivity decline? Can current methods and tools fulfill the requirements, or are new methods necessary? We draw on the relevant, recent literature to provide and explore answers. In so doing, we identify essential, key roles for agent-based and other methods. We assemble a list of requirements necessary for M&S to meet the diverse needs distilled from a collection of research, review, and opinion articles. We argue that to realize its full potential, M&S should be actualized within a larger information technology framework--a dynamic knowledge repository--wherein models of various types execute, evolve, and increase in accuracy over time. We offer some details of the issues that must be addressed for such a repository to accrue the capabilities needed to reverse the productivity decline
Electronic Flux Density Maps Reveal Unique Current Patterns in a Single-Molecule-Graphene-Nanoribbon Junction
To assist the design of novel, highly efficient molecular junctions, a deep
understanding of the precise charge transport mechanisms through these devices
is of prime importance. In the present contribution, we describe a procedure to
investigate spatially-resolved electron transport through a nanojunction from
first principles, at the example of a nitro-substituted oligo-(phenylene
ethynylene) covalently bound to graphene nanoribbon leads. Recently, we
demonstrated that the conductivity of this single-molecule-graphene-nanoribbon
junction can be switched quantitatively and reversibly upon application of a
static electric field in a top gate position, in the spirit of a traditional
field effect transistor [J. Phys. Chem. C, 2016, 120, 28808-28819]. The
propensity of the central oligomer unit to align with the external field was
found to induce a damped rotational motion and to cause an interruption of the
conjugated -system, thereby drastically reducing the conductance through
the nanojunction. In the current work, we use the driven Liouville-von-Neumann
(DLvN) approach for time-dependent electronic transport calculations to
simulate the electronic current dynamics under time-dependent potential biases
for the two logical states of the nanojunction. Our quantum dynamical
simulations rely on a novel localization procedure using an orthonormal set of
molecular orbitals obtained from a standard density functional theory
calculation to generate a localized representation for the different parts of
the molecular junction. The transparent DLvN formalism allows us to directly
access the density matrix and to reconstruct the time-dependent electronic
current density, unraveling unique mechanistic details of the electron
transport
Simulation of low rigidity part machining applied to thin-walled structures
The aim of this study is to evaluate the modelling of machining vibrations of thin-walled aluminium work- pieces at high productivity rate. The use of numerical simulation is generally aimed at giving optimal cutting conditions for the precision and the surface finish needed. The proposed modelling includes all the ingredients needed for real productive machining of thin-walled parts. It has been tested with a specially designed machining test with high cutting engagement and taking into account all the phenomena involved in the dynamics of cutting. The system has been modelled using several simulation techni- ques. On the one hand, the milling process was modelled using a dynamic mechanistic model, with time domain simulation. On the other hand, the dynamic parameters of the system were obtained step by step by finite element analysis; thus the variation due to metal removal and the cutting edge position has been accurately taken into account. The results of the simulations were compared to those of the experiments; the discussion is based on the analysis of the cutting forces, the amplitude and the frequency of the vibrations evaluating the presence of chatter. The specific difficulties to perfect simulation of thin-walled workpiece chatter have been finely analysed
First-principles kinetic modeling in heterogeneous catalysis: an industrial perspective on best-practice, gaps and needs
Electronic structure calculations have emerged as a key contributor in modern heterogeneous catalysis research, though their application in chemical reaction engineering remains largely limited to academia. This perspective aims at encouraging the judicious use of first-principles kinetic models in industrial settings based on a critical discussion of present-day best practices, identifying existing gaps, and defining where further progress is needed
Eco-efficient process based on conventional machining as an alternative technology to chemical milling of aeronautical metal skin panels
El fresado quÃmico es un proceso diseñado para la reducción de peso de pieles metálicas que, a
pesar de los problemas medioambientales asociados, se utiliza en la industria aeronáutica desde los
años 50. Entre sus ventajas figuran el cumplimiento de las estrictas tolerancias de diseño de piezas
aeroespaciales y que pese a ser un proceso de mecanizado, no induce tensiones residuales. Sin
embargo, el fresado quÃmico es una tecnologÃa contaminante y costosa que tiende a ser sustituida.
Gracias a los avances realizados en el mecanizado, la tecnologÃa de fresado convencional permite
alcanzar las tolerancias requeridas siempre y cuando se consigan evitar las vibraciones y la flexión
de la pieza, ambas relacionadas con los parámetros del proceso y con los sistemas de utillaje
empleados.
Esta tesis analiza las causas de la inestabilidad del corte y la deformación de las piezas a través
de una revisión bibliográfica que cubre los modelos analÃticos, las técnicas computacionales y las
soluciones industriales en estudio actualmente. En ella, se aprecia cómo los modelos analÃticos y las
soluciones computacionales y de simulación se centran principalmente en la predicción off-line de
vibraciones y de posibles flexiones de la pieza. Sin embargo, un enfoque más industrial ha llevado al
diseño de sistemas de fijación, utillajes, amortiguadores basados en actuadores, sistemas de rigidez
y controles adaptativos apoyados en simulaciones o en la selección estadÃstica de parámetros.
Además se han desarrollado distintas soluciones CAM basadas en la aplicación de gemelos virtuales.
En la revisión bibliográfica se han encontrado pocos documentos relativos a pieles y suelos
delgados por lo que se ha estudiado experimentalmente el efecto de los parámetros de corte en su
mecanizado. Este conjunto de experimentos ha demostrado que, pese a usar un sistema que
aseguraba la rigidez de la pieza, las pieles se comportaban de forma diferente a un sólido rÃgido en
términos de fuerzas de mecanizado cuando se utilizaban velocidades de corte cercanas a la alta
velocidad. También se ha verificado que todas las muestras mecanizadas entraban dentro de
tolerancia en cuanto a la rugosidad de la pieza. Paralelamente, se ha comprobado que la correcta
selección de parámetros de mecanizado puede reducir las fuerzas de corte y las tolerancias del
proceso hasta un 20% y un 40%, respectivamente. Estos datos pueden tener aplicación industrial en
la simplificación de los sistemas de amarre o en el incremento de la eficiencia del proceso.
Este proceso también puede mejorarse incrementando la vida de la herramienta al utilizar
fluidos de corte. Una correcta lubricación puede reducir la temperatura del proceso y las tensiones
residuales inducidas a la pieza. Con este objetivo, se han desarrollado diferentes lubricantes, basados
en el uso de lÃquidos iónicos (IL) y se han comparado con el comportamiento tribológico del par de
contacto en seco y con una taladrina comercial. Los resultados obtenidos utilizando 1 wt% de los
lÃquidos iónicos en un tribómetro tipo pin-on-disk demuestran que el IL no halogenado reduce
significativamente el desgaste y la fricción entre el aluminio, material a mecanizar, y el carburo de
tungsteno, material de la herramienta, eliminando casi toda la adhesión del aluminio sobre el pin, lo
que puede incrementar considerablemente la vida de la herramienta.Chemical milling is a process designed to reduce the weight of metals skin panels. This process
has been used since 1950s in the aerospace industry despite its environmental concern. Among its
advantages, chemical milling does not induce residual stress and parts meet the required tolerances.
However, this process is a pollutant and costly technology. Thanks to the last advances in
conventional milling, machining processes can achieve similar quality results meanwhile vibration
and part deflection are avoided. Both problems are usually related to the cutting parameters and the
workholding.
This thesis analyses the causes of the cutting instability and part deformation through a literature
review that covers analytical models, computational techniques and industrial solutions. Analytics
and computational solutions are mainly focused on chatter and deflection prediction and industrial
approaches are focused on the design of workholdings, fixtures, damping actuators, stiffening
devices, adaptive control systems based on simulations and the statistical parameters selection, and
CAM solutions combined with the use of virtual twins applications.
In this literature review, few research works about thin-plates and thin-floors is found so the
effect of the cutting parameters is also studied experimentally. These experiments confirm that even
using rigid workholdings, the behavior of the part is different to a rigid body at high speed machining.
On the one hand, roughness values meet the required tolerances under every set of the tested
parameters. On the other hand, a proper parameter selection reduces the cutting forces and process
tolerances by up to 20% and 40%, respectively. This fact can be industrially used to simplify
workholding and increase the machine efficiency.
Another way to improve the process efficiency is to increase tool life by using cutting fluids.
Their use can also decrease the temperature of the process and the induced stresses. For this purpose,
different water-based lubricants containing three types of Ionic Liquids (IL) are compared to dry and
commercial cutting fluid conditions by studying their tribological behavior. Pin on disk tests prove
that just 1wt% of one of the halogen-free ILs significantly reduces wear and friction between both
materials, aluminum and tungsten carbide. In fact, no wear scar is noticed on the ball when one of
the ILs is used, which, therefore, could considerably increase tool life
- …