4,188 research outputs found

    Effect of nonuniform hole-content distribution within the interlayer pair-tunneling mechanism of layered HTSC

    Full text link
    The interlayer pair-tunneling (ILT) mechanism for high-TcT_c superconductivity is able to predict the dependence of the (optimal) critical temperature Tc on the number of layers n within an homologous series of layered cuprate oxides. We generalize the mean-field procedure employed to evaluate Tc within an extended in-plane Hubbard model in presence of ILT, developed for a bilayer complex (n = 2), to the case of n = 3, 4 inequivalent superconducting layers. As a function of doping, we show how a nonuniform hole-content distribution among different layers affects Tc. In particular, depending on doping, the onset of superconductivity may be ruled by inner or outer layers. The latter result may be related to recent experimental data of Tc as a function of pressure in Tl- and Bi-based layered superconductors

    Low dimensional magnetic solids and single crystal elpasolites: Need for improved crystal growing techniques

    Get PDF
    The need for extensive crystal growing experiments to develop techniques for preparing crystals suitable for magnetic anisotropy measurements and detailed X-ray and neutron diffraction studies is rationalized on the basis of the unique magnetic properties of the materials and their hydrogen bonded structures which have many features in common with metalloenzyme and metalloprotein active sites. Single crystals of the single and mixed lanthanide species are prepared by the Bridgeman technique of gradient solidification of molten samples. The effects of crystal imperfections on the optical properties of these materials are an important part of the projected research. A series of a-amido acid complexes of first row transition metals were prepared which crystallize as infinite linear chains and exhibit low dimensional magnetic ordering (one or two) at temperature below 40 K

    Investigation of the effects of cobalt ions on epoxy properties

    Get PDF
    The effects of Co(acac)sub x complexes on MY-720 epoxy properties have been investigated. It appears that Co2(+) ions form antibonding or nonbonding orbitals which increase the free volume and also reduce the cohesiveness of the host epoxy. The effects of Co2(+) ions, on the other hand, seem to result in increased Cohesiveness of the epoxy. The experimental values of magnetic moments of both types of ions in MY-720 suggest that the orbital momentum contributions of the (3d) electrons are partially conserved, though the effect is more pronounced for Co2(+) ions. The coordination environment of the cobalt ions in the host epoxy does not appear to be uniquely defined. These results indicate that the effects of metal ions on resin properties cannot be easily predicted on the basis of ligand field theory argument alone. Complex interactions between metal ions and host epoxy molecular structure suggest the desirability of parallel experimental investigations of electronic, magnetic, and mechanical properties of metal ion-containing epoxy samples for comparison with theory

    Localized Charge Transfer Process and Surface Band Bending in Methane Sensing by GaN Nanowires

    Full text link
    The physicochemical processes at the surfaces of semiconductor nanostructures involved in electrochemical and sensing devices are strongly influenced by the presence of intrinsic or extrinsic defects. To reveal the surface controlled sensing mechanism, intentional lattice oxygen defects are created on the surfaces of GaN nanowires for the elucidation of charge transfer process in methane (CH4) sensing. Experimental and simulation results of electron energy loss spectroscopy (EELS) studies on oxygen rich GaN nanowires confirmed the possible presence of 2(ON) and VGa-3ON defect complexes. A global resistive response for sensor devices of ensemble nanowires and a localized charge transfer process in single GaN nanowires are studied in situ scanning by Kelvin probe microscopy (SKPM). A localized charge transfer process, involving the VGa-3ON defect complex on nanowire surface is attributed in controlling the global gas sensing behavior of the oxygen rich ensemble GaN nanowires.Comment: 42 pages, 6 figures, Journa

    Status of the Electroforming Shield Design (ESD) project

    Get PDF
    The utilization of a digital computer to augment electrodeposition/electroforming processes in which nonconducting shielding controls local cathodic current distribution is reported. The primary underlying philosophy of the physics of electrodeposition was presented. The technical approach taken to analytically simulate electrolytic tank variables was also included. A FORTRAN computer program has been developed and implemented. The program utilized finite element techniques and electrostatic theory to simulate electropotential fields and ionic transport
    corecore