798,873 research outputs found

    Structures, enthalpies of formation, and ionization energies for the parent and binary mixed carbon, silicon, nitrogen, and phosphorus cubane derivatives: A G4MP2 theoretical study

    Get PDF
    Gas phase standard state (298.15 K, 1 atm) structures, enthalpies of formation, and ionization energies (IEs) were calculated at the G4MP2 composite method level of theory for the parent and binary mixed carbon, silicon, nitrogen, and phosphorus cubane derivatives. Increasing nitrogen content increases the enthalpies of formation for the carbon-nitrogen, nitrogen-phosphorus, and silicon-nitrogen binary cubanes, with the opposite enthalpies of formation trend for increasing phosphorus content within the carbon-phosphorus, nitrogen-phosphorus, and silicon-phosphorus derivatives. Varying carbon/silicon content in the carbon-silicon cubanes results in no general trends for enthalpies of formation. Isomerization enthalpies within the homolog groups having more than one isomer vary widely with atomic composition and substitution patterns. Increasing nitrogen content of the carbon-nitrogen and nitrogen-phosphorus derivatives increases the IE, increasing silicon content in the carbon-silicon cubanes and phosphorus content of the carbon-phosphorus cubanes decreases the IE, while no IE clear trends are evident based on relative atomic content for the silicon-nitrogen and silicon-phosphorus compounds. The binary mixed carbon, silicon, nitrogen, and phosphorus cubane derivatives are predicted to display potentially tunable thermodynamic stability and redox behavior depending on the atom identities and relative positions

    An evaluation of weld metal nitrogen retention and properties in 316NL austenitic stainless steel

    Get PDF
    A series of tests were conducted using varying levels of nitrogen and helium in a conventional argon shielding gas when welding 316LN austenitic stainless steel. The outcome was that a 15 per cent nitrogen addition to the argon shielding gas had the most significant effect on increasing the weld metal nitrogen. Subsequent additions of helium to the argon 15 per cent nitrogen shielding gas had very little overall benefit. Increasing the nitrogen content of the weld metal had the consequential effects of decreasing the ferrite content and the hardness. As a result of solid solution strengthening, the yield strength increased with increase in nitrogen content. There was an increase in impact toughness as the nitrogen content increased. This was related to the decreased ferrite content associated with the strong austenetizing potential of nitrogen. It was also shown that an almost fully austenitic weld metal could still have very good toughness. In combination with these effects there was no loss in corrosion resistance. The addition of nitrogen to a conventional argon shielding gas presents attractive cost and quality benefits over the established requirement to over alloy the weld filler material with expensive alloys such as nickel

    Chlorophyll, crop growth rate and forage yield of Brachiaria (Brachiaria brizantha Stapf) as the result of goat manure in various nitrogen dosage

    Get PDF
    growth rate (CGR), forage yield, dry matter ((DM) yield and DM content of BrachiariabrizanthaStapf. The experiment used manure (0 and 5 ton/ha) and nitrogen dosage (50, 100, 150 kg N ha-1) set in factorial design 2 x 3, repeated three times. The result showed that manure increased chlorophyll content, plant height, CGR, forage yield, DM yield and DM content. N dosage increased chlorophyll content, plant height, CGR, forage yield, DM yield and DM content. The interaction between manure and N dosage increased chlorophyll content, plant height, CGR, forage yield, DM yield and DM content. The result showed that manure usage and nitrogen dosage 150 kg N ha-1 increased chlorophyll content, plant height, CGR, forage yield, DM yield and DM content in the amount of 27.5; 20.5; 98.4; 68.5; 103.4 and 20.5% compared to without manure and nitrogen dosage in the amount of 150 kg N ha-1

    Effect of fuel nitrogen and hydrogen content on emissions in hydrocarbon combustion

    Get PDF
    How the emissions of nitrogen oxides and carbon monoxide are affected by: (1) the decreased hydrogen content and (2) the increased organic nitrogen content of coal derived fuels is investigated. Previous CRT experimental work in a two stage flame tube has shown the effectiveness of rich lean two stage combustion in reducing fuel nitrogen conversion to nitrogen oxides. Previous theoretical work gave preliminary indications that emissions trends from the flame tube experiment could be predicted by a two stage, well stirred reactor combustor model using a detailed chemical mechanism for propane oxidation and nitrogen oxide formation. Additional computations are reported and comparisons with experimental results for two additional fuels and a wide range of operating conditions are given. Fuels used in the modeling are pure propane, a propane toluene mixture and pure toluene. These give hydrogen contents 18, 11 and 9 percent by weight, respectively. Fuel bound nitrogen contents of 0.5 and 1.0 percent were used. Results are presented for oxides of nitrogen and also carbon monoxide concentrations as a function of primary equivalence ratio, hydrogen content and fuel bound nitrogen content

    Effect of ammonium concentration on alcoholic fermentation kinetics by wine yeasts for high sugar content

    Get PDF
    Kinetics of alcoholic fermentation by Saccharomyces cerevisiae wine strains in a synthetic medium with high sugar content were established for different nitrogen initial content and are presented for 4 strains. The composition of the medium was close to grape must except that the nitrogen source consisted mainly in ammonium and was varied from 120 to 290 mg N/L assimilable nitrogen. The overall nitrogen consumed was also estimated in order to determine nitrogen requirement variability. The effect of assimilable nitrogen was in general greater on sugar consumption rates than on growth and 3 kinds of effect on sugar consumption rates were observed: i) existence of an optimal initial nitrogen level for a maximal sugar consumption rate (inhibition if excess), ii) no effect of nitrogen beyond the intermediary level (saturation), iii) sugar consumption rate proportional to the initial nitrogen level (activation). In all cases, the amount of consumed nitrogen increased with its initial concentration and so did the fructophilic capacity of the strains. The optimal requirement varied from 0.62 to 0.91 mg N per g of sugars according to the different strains. There was no general correlation between the sugar assimilation rates and the nitrogen requirement

    Distribution of nitrogen compounds in important sections of sugar beets

    Get PDF
    In literature the beet is often described as consisting of the following technologically important sections: crown, root and tail. The aim of the study was to determine the distribution of nitrogen compounds in the technologically important beet sections of untopped sugar beets with particular emphasis on the content of nitrate and nitrite. The Finezja sugar beet variety had been collected from the clamps in one of the Polish sugar factories in October during 2013/2014 campaign. The untopped sugar beets were divided into three sections: crown, root and tail. The content of total amount of nitrogen, proteinaceous nitrogen, α-amino nitrogen, the sum of the amide and ammonia nitrogen, nitrates and nitrite in these sections were determined. Although the crown of the sugar beet represented only 14.7% of it mass, this section contained on average 30% of the total quantity of α-amino acids as well as amide and ammonia nitrogen.This section contained approximately 77% of the total quantity of nitrate and 88% of nitrite. Untopped sugar beets would introduce much higher amounts of nitrogen compounds in comparison to topped raw material

    Novel Rubidium Poly-Nitrogen Materials at High Pressure

    Full text link
    First-principles crystal structure search is performed to predict novel rubidium poly-nitrogen materials at high pressure by varying the stoichiometry, i. e. relative quantities of the constituent rubidium and nitrogen atoms. Three compounds of high nitrogen content, RbN_{5}, RbN_{2}, and Rb_{4}N_{6}, are discovered. Rubidium pentazolate (RbN5) becomes thermodynamically stable at pressures above \unit[30]{GPa}. The charge transfer from Rb to N atoms enables aromaticity in cyclo-N_{^{_{5}}}^{-} while increasing the ionic bonding in the crystal. Rubidium pentazolate can be synthesized by compressing rubidium azide (RbN3) and nitrogen (N2) precursors above \unit[9.42]{GPa}, and its experimental discovery is aided by calculating the Raman spectrum and identifying the features attributed to N_{^{_{5}}}^{-} modes. The two other interesting compounds, RbN2 containing infinitely-long single-bonded nitrogen chains, and Rb_{4}N_{6} consisting of single-bonded N_{6} hexazine rings, become thermodynamically stable at pressures exceeding \unit[60]{GPa}. In addition to the compounds with high nitrogen content, Rb_{3}N_{3}, a new compound with 1:1 RbN stoichiometry containing bent N_{3} azides is found to exist at high pressures

    Flame tube parametric studies for control of fuel bound nitrogen using rich-lean two-stage combustion

    Get PDF
    An experimental parametric study of rich-lean two-stage combustion in a flame tube is described and approaches for minimizing the conversion of fuel-bound nitrogen to nitrogen oxides in a premixed, homogeneous combustion system are evaluated. Air at 672 K and 0.48 MPa was premixed with fuel blends of propane, toluene, and pyridine at primary equivalence ratios ranging from 0.5 to 2.0 and secondary equivalence ratios of 0.5 to 0.7. Distillates of SRC-II, a coal syncrude, were also tested. The blended fuels were proportioned to vary fuel hydrogen composition from 9.0 to 18.3 weight percent and fuel nitrogen composition from zero to 1.5 weight percent. Rich-lean combustion proved effective in reducing fuel nitrogen to NO sub x conversion; conversion rates up to 10 times lower than those normally produced by single-stage combustion were achieved. The optimum primary equivalence ratio, where the least NO sub x was produced and combustion efficiency was acceptable, shifted between 1.4 and 1.7 with changes in fuel nitrogen content and fuel hydrogen content. Increasing levels of fuel nitrogen content lowered the conversion rate, but not enough to avoid higher NO sub x emissions as fuel nitrogen increased
    corecore