362,156 research outputs found
Sparse Linear Identifiable Multivariate Modeling
In this paper we consider sparse and identifiable linear latent variable
(factor) and linear Bayesian network models for parsimonious analysis of
multivariate data. We propose a computationally efficient method for joint
parameter and model inference, and model comparison. It consists of a fully
Bayesian hierarchy for sparse models using slab and spike priors (two-component
delta-function and continuous mixtures), non-Gaussian latent factors and a
stochastic search over the ordering of the variables. The framework, which we
call SLIM (Sparse Linear Identifiable Multivariate modeling), is validated and
bench-marked on artificial and real biological data sets. SLIM is closest in
spirit to LiNGAM (Shimizu et al., 2006), but differs substantially in
inference, Bayesian network structure learning and model comparison.
Experimentally, SLIM performs equally well or better than LiNGAM with
comparable computational complexity. We attribute this mainly to the stochastic
search strategy used, and to parsimony (sparsity and identifiability), which is
an explicit part of the model. We propose two extensions to the basic i.i.d.
linear framework: non-linear dependence on observed variables, called SNIM
(Sparse Non-linear Identifiable Multivariate modeling) and allowing for
correlations between latent variables, called CSLIM (Correlated SLIM), for the
temporal and/or spatial data. The source code and scripts are available from
http://cogsys.imm.dtu.dk/slim/.Comment: 45 pages, 17 figure
Multivariate dependence modeling using copulas
There exist necessary and sufficient conditions on the generating functions of the FGM family, in order to obtain various dependence properties. We present multivariate generalizations of this class studying symmetry and dependence concepts, measuring the dependence among the components of each class and providing several examples.copula, density function, FGM copulas, dependence, symmetry
Multivariate Modeling of Daily REIT Volatility
This paper examines volatility in REITs using a multivariate GARCH based model. The Multivariate VARGARCH technique documents the return and volatility linkages between REIT sub-sectors and also examines the influence of other US equity series. The motivation is for investors to incorporate time-varyng volatility and correlations in their portfolio selection. The results illustrate the differences in results when higher frequency daily data is tested in comparison to the monthly data that has been commonly used in the existing literature. The linkages both within the REIT sector and between REITs and related sectors such as value stocks are weaker than commonly found in monthly studies. The broad market would appear to be more influential in the daily case.
- …