22,896 research outputs found
Multiphoton Quantum Optics and Quantum State Engineering
We present a review of theoretical and experimental aspects of multiphoton
quantum optics. Multiphoton processes occur and are important for many aspects
of matter-radiation interactions that include the efficient ionization of atoms
and molecules, and, more generally, atomic transition mechanisms;
system-environment couplings and dissipative quantum dynamics; laser physics,
optical parametric processes, and interferometry. A single review cannot
account for all aspects of such an enormously vast subject. Here we choose to
concentrate our attention on parametric processes in nonlinear media, with
special emphasis on the engineering of nonclassical states of photons and
atoms. We present a detailed analysis of the methods and techniques for the
production of genuinely quantum multiphoton processes in nonlinear media, and
the corresponding models of multiphoton effective interactions. We review
existing proposals for the classification, engineering, and manipulation of
nonclassical states, including Fock states, macroscopic superposition states,
and multiphoton generalized coherent states. We introduce and discuss the
structure of canonical multiphoton quantum optics and the associated one- and
two-mode canonical multiphoton squeezed states. This framework provides a
consistent multiphoton generalization of two-photon quantum optics and a
consistent Hamiltonian description of multiphoton processes associated to
higher-order nonlinearities. Finally, we discuss very recent advances that by
combining linear and nonlinear optical devices allow to realize multiphoton
entangled states of the electromnagnetic field, that are relevant for
applications to efficient quantum computation, quantum teleportation, and
related problems in quantum communication and information.Comment: 198 pages, 36 eps figure
Formalism for Multiphoton Plasmon Excitation in Jellium Clusters
We present a new formalism for the description of multiphoton plasmon
excitation processes in jellium clusters. By using our method, we demonstrate
that, in addition to dipole plasmon excitations, the multipole plasmons
(quadrupole, octupole, etc) can be excited in a cluster by multiphoton
absorption processes, which results in a significant difference between plasmon
resonance profiles in the cross sections for multiphoton as compared to
single-photon absorption. We calculate the cross sections for multiphoton
absorption and analyse the balance between the surface and volume plasmon
contributions to multipole plasmons.Comment: 29 pages, 1 figur
Semiclassical description of multiphoton processes
We analyze strong field atomic dynamics semiclassically, based on a full
time-dependent description with the Hermann-Kluk propagator. From the
properties of the exact classical trajectories, in particular the accumulation
of action in time, the prominent features of above threshold ionization (ATI)
and higher harmonic generation (HHG) are proven to be interference phenomena.
They are reproduced quantitatively in the semiclassical approximation.
Moreover, the behavior of the action of the classical trajectories supports the
so called strong field approximation which has been devised and postulated for
strong field dynamics.Comment: 10 pages, 11 figure
Structure of multiphoton quantum optics. II. Bipartite systems, physical processes, and heterodyne squeezed states
Extending the scheme developed for a single mode of the electromagnetic field
in the preceding paper ``Structure of multiphoton quantum optics. I. Canonical
formalism and homodyne squeezed states'', we introduce two-mode nonlinear
canonical transformations depending on two heterodyne mixing angles. They are
defined in terms of hermitian nonlinear functions that realize heterodyne
superpositions of conjugate quadratures of bipartite systems. The canonical
transformations diagonalize a class of Hamiltonians describing non degenerate
and degenerate multiphoton processes. We determine the coherent states
associated to the canonical transformations, which generalize the non
degenerate two--photon squeezed states. Such heterodyne multiphoton squeezed
are defined as the simultaneous eigenstates of the transformed, coupled
annihilation operators. They are generated by nonlinear unitary evolutions
acting on two-mode squeezed states. They are non Gaussian, highly non
classical, entangled states. For a quadratic nonlinearity the heterodyne
multiphoton squeezed states define two--mode cubic phase states. The
statistical properties of these states can be widely adjusted by tuning the
heterodyne mixing angles, the phases of the nonlinear couplings, as well as the
strength of the nonlinearity. For quadratic nonlinearity, we study the
higher-order contributions to the susceptibility in nonlinear media and we
suggest possible experimental realizations of multiphoton conversion processes
generating the cubic-phase heterodyne squeezed states.Comment: 16 pages, 23 figure
Multiphoton Processes in Driven Mesoscopic Systems
We study the statistics of multi-photon absorption/emission processes in a
mesoscopic ring threaded by an harmonic time-dependent flux . For this
sake, we demonstrate a useful analogy between the Keldysh quantum kinetic
equation for the electrons distribution function and a Continuous Time Random
Walk in energy space with corrections due to interference effects. Studying the
probability to absorb/emit quanta per scattering event, we
explore the crossover between ultra-quantum/low-intensity limit and
quasi-classical/high-intensity regime, and the role of multiphoton processes in
driving it.Comment: 6 pages, 5 figures, extended versio
The Role of Multilevel Landau-Zener Interference in Extreme Harmonic Generation
Motivated by the observation of multiphoton electric dipole spin resonance
processes in InAs nanowires, we theoretically study the transport dynamics of a
periodically driven five-level system, modeling the level structure of a
two-electron double quantum dot. We show that the observed multiphoton
resonances, which are dominant near interdot charge transitions, are due to
multilevel Landau-Zener-Stuckelberg-Majorana interference. Here a third energy
level serves as a shuttle that transfers population between the two resonant
spin states. By numerically integrating the master equation we replicate the
main features observed in the experiments: multiphoton resonances (as large as
8 photons), a robust odd-even dependence, and oscillations in the electric
dipole spin resonance signal as a function of energy level detuning
The application of time evolution operators and Feynman diagrams to nonlinear optics
This paper develops a consistent formalism for describing nonlinear optical mixing and multiphoton processes of any arbitrary order. The theory uses the time-evolution operators of quantum mechanics, and the related Feynman diagrams
- âŠ