3,171 research outputs found
A study for the static properties of symmetric linear multiblock copolymers under poor solvent conditions
We use a standard bead-spring model and molecular dynamics simulations to
study the static properties of symmetric linear multiblock copolymer chains and
their blocks under poor solvent conditions in a dilute solution from the regime
close to theta conditions, where the chains adopt a coil-like formation, to the
poorer solvent regime where the chains collapse obtaining a globular formation
and phase separation between the blocks occurs. We choose interaction
parameters as is done for a standard model, i.e., the Lennard-Jones fluid and
we consider symmetric chains, i.e., the multiblock copolymer consists of an
even number of alternating chemically different A and B blocks of the same
length . We show how usual static properties of the individual
blocks and the whole multiblock chain can reflect the phase behavior of such
macromolecules. Also, how parameters, such as the number of blocks can
affect properties of the individual blocks, when chains are in a poor solvent
for a certain range of . A detailed discussion of the static properties of
these symmetric multiblock copolymers is also given. Our results in combination
with recent simulation results on the behavior of multiblock copolymer chains
provide a complete picture for the behavior of these macromolecules under poor
solvent conditions, at least for this most symmetrical case. Due to the
standard choice of our parameters, our system can be used as a benchmark for
related models, which aim at capturing the basic aspects of the behavior of
various biological systems.Comment: 13 pages, 11 figure
Micelle formation, gelation and phase separation of amphiphilic multiblock copolymers
The phase behaviour of amphiphilic multiblock copolymers with a large number
of blocks in semidilute solutions is studied by lattice Monte Carlo
simulations. The influence on the resulting structures of the concentration,
the solvent quality and the ratio of hydrophobic to hydrophilic monomers in the
chains has been assessed explicitely. Several distinct regimes are put in
evidence. For poorly substituted (mainly hydrophilic) copolymers formation of
micelles is observed, either isolated or connected by the hydrophilic moieties,
depending on concentration and chain length. For more highly substituted chains
larger tubular hydrophobic structures appear which, at higher concentration,
join to form extended hydrophobic cores. For both substitution ratios gelation
is observed, but with a very different gel network structure. For the poorly
substituted chains the gel consists of micelles cross-linked by hydrophilic
blocks whereas for the highly substituted copolymers the extended hydrophobic
cores form the gelling network. The interplay between gelation and phase
separation clearly appears in the phase diagram. In particular, for poorly
substituted copolymers and in a narrow concentration range, we observe a
sol-gel transition followed by an inverse gel-sol transition when increasing
the interaction energy. The simulation results are discussed in the context of
the experimentally observed phase properties of methylcellulose, a
hydrophobically substituted polysaccharide.Comment: 14 pages, 14 figures; Soft Matter (2011
Recommended from our members
100th Anniversary of Macromolecular Science Viewpoint: Opportunities in the Physics of Sequence-Defined Polymers
Polymer science has been driven by ever-increasing molecular complexity, as polymer synthesis expands an already-vast palette of chemical and architectural parameter space. Copolymers represent a key example, where simple homopolymers have given rise to random, alternating, gradient, and block copolymers. Polymer physics has provided the insight needed to explore this monomer sequence parameter space. The future of polymer science, however, must contend with further increases in monomer precision, as this class of macromolecules moves ever closer to the sequence-monodisperse polymers that are the workhorses of biology. The advent of sequence-defined polymers gives rise to opportunities for material design, with increasing levels of chemical information being incorporated into long-chain molecules; however, this also raises questions that polymer physics must address. What properties uniquely emerge from sequence-definition? Is this circumstance-dependent? How do we define and think about sequence dispersity? How do we think about a hierarchy of sequence effects? Are more sophisticated characterization methods, as well as theoretical and computational tools, needed to understand this class of macromolecules? The answers to these questions touch on many difficult scientific challenges, setting the stage for a rich future for sequence-defined polymers in polymer physics
A finite element approach to self-consistent field theory calculations of multiblock polymers
Self-consistent field theory (SCFT) has proven to be a powerful tool for
modeling equilibrium microstructures of soft materials, particularly for
multiblock polymers. A very successful approach to numerically solving the SCFT
set of equations is based on using a spectral approach. While widely
successful, this approach has limitations especially in the context of current
technologically relevant applications. These limitations include non-trivial
approaches for modeling complex geometries, difficulties in extending to
non-periodic domains, as well as non-trivial extensions for spatial adaptivity.
As a viable alternative to spectral schemes, we develop a finite element
formulation of the SCFT paradigm for calculating equilibrium polymer
morphologies. We discuss the formulation and address implementation challenges
that ensure accuracy and efficiency. We explore higher order chain contour
steppers that are efficiently implemented with Richardson Extrapolation. This
approach is highly scalable and suitable for systems with arbitrary shapes. We
show spatial and temporal convergence and illustrate scaling on up to 2048
cores. Finally, we illustrate confinement effects for selected complex
geometries. This has implications for materials design for nanoscale
applications where dimensions are such that equilibrium morphologies
dramatically differ from the bulk phases
Globular Structures of a Helix-Coil Copolymer: Self-Consistent Treatment
A self-consistent field theory was developed in the grand-canonical ensemble
formulation to study transitions in a helix-coil multiblock globule. Helical
and coil parts are treated as stiff rods and self-avoiding walks of variable
lengths correspondingly. The resulting field-theory takes, in addition to the
conventional Zimm-Bragg (B.H. Zimm, I.K. Bragg, J. Chem. Phys. 31, 526 (1959))
parameters, also three-dimensional interaction terms into account. The
appropriate differential equations which determine the self-consistent fields
were solved numerically with finite element method. Three different phase
states are found: open chain, amorphous globule and nematic liquid-crystalline
(LC) globule. The LC-globule formation is driven by the interplay between the
hydrophobic helical segments attraction and the anisotropic globule surface
energy of an entropic nature. The full phase diagram of the helix-coil
copolymer was calculated and thoroughly discussed. The suggested theory shows a
clear interplay between secondary and tertiary structures in globular
homopolypeptides.Comment: 26 pages, 30 figures, corrected some typo
Copolymer adsorption kinetics at a selective liquid-liquid interface: Scaling theory and computer experiment
We consider the adsorption kinetics of a regular block-copolymer of total
length and block size at a selective liquid-liquid interface in the
limit of strong localization. We propose a simple analytic theory based on
scaling considerations which describes the relaxation of the initial coil into
a flat-shaped layer. The characteristic times for attaining equilibrium values
of the gyration radius components perpendicular and parallel to the interface
are predicted to scale with chain length and block length as
(here is the Flory exponent)
and as , although initially the rate of coil
flattening is expected to decrease with block size as . Since
typically for multiblock copolymers, our results suggest that the
flattening dynamics proceeds faster perpendicular rather than parallel to the
interface. We also demonstrate that these scaling predictions agree well with
the results of extensive Monte Carlo simulations of the localization dynamics.Comment: 4 pages, 4 figures, submited to Europhys. Let
Effects of polydispersity on the phase coexistence diagrams in multiblock copolymers with Laser block length distribution
Phase behavior of AB-multiblock copolymer melts which consists of chains with
Laser distribution of A and B blocks have been investigated in the framework of
the mean-field theory, where the polydispersity of copolymer is a function of
two parameters K and M. The influence of the Laser distribution on higher order
correlation functions (up to sixth order) are computed for various values of K
and M, and their contributions on the phase diagrams and phase coexistence are
presented. It is shown that, with increasing polydispersity (decreasing K and
increasing M) the transition lines of all phases shift upwards, consequently
polydispersity destabilize the system.Comment: 15 pages, Late
Self-assembling multiblock amphiphiles: Molecular design, supramolecular structure, and mechanical properties
We perform off-lattice, canonical ensemble molecular dynamics simulations of
the self-assembly of long segmented copolymers consisting of alternating,
tunably attractive and hydrophobic {\em binder} domains, connected by
hydrophilic {\em linker} chains whose length may be separately controlled. In
such systems, the molecular design of the molecule directly determines the
balance between energetic and entropic tendencies. We determine the structural
phase diagram of this system, which shows collapsed states (dominated by the
attractive linkers' energies), swollen states (dominated by the random coil
linkers' entropies) as well as intermediate network hydrogel phases, where the
long molecules exhibit partial collapse to a {\em single molecule network}
state. We present an analysis of the connectivity and spatial structure of this
network phase, and relate its basic topology to mechanical properties, using a
modified rubber elasticity model. The mechanical properties are further
characterized in a direct computational implementation of oscillatory rheology
measurements. We find that it is possible to optimize the mechanical
performance by an appropriate choice of molecular design, which may point the
way to novel synthetics that make optimal mechanical use of constituent
polymers
- …