29 research outputs found
Jagged2a-Notch Signaling Mediates Cell Fate Choice in the Zebrafish Pronephric Duct
Pronephros, a developmental model for adult mammalian kidneys (metanephros) and a functional kidney in early teleosts, consists of glomerulus, tubule, and duct. These structural and functional elements are responsible for different kidney functions, e.g., blood filtration, waste extraction, salt recovery, and water balance. During pronephros organogenesis, cell differentiation is a key step in generating different cell types in specific locations to accomplish designated functions. However, it is poorly understood what molecules regulate the differentiation of different cell types in different parts of the kidney. Two types of epithelial cells, multi-cilia cells and principal cells, are found in the epithelia of the zebrafish distal pronephric duct. While the former is characterized by at least 15 apically localized cilia and expresses centrin2 and rfx2, the latter is characterized by a single primary cilium and sodium pumps. Multi-cilia cells and principal cells differentiate from 17.5 hours post-fertilization onwards in a mosaic pattern. Jagged2a-Notch1a/Notch3-Her9 is responsible for specification and patterning of these two cell types through a lateral inhibition mechanism. Furthermore, multi-cilia cell hyperplasia was observed in mind bomb mutants and Mind bomb was shown to interact with Jagged2a and facilitate its internalization. Taken together, our findings add a new paradigm of Notch signaling in kidney development, namely, that Jagged2a-Notch signaling modulates cell fate choice in a nephric segment, the distal pronephric duct
Fluid transport at low Reynolds number with magnetically actuated artificial cilia
By numerical modeling we investigate fluid transport in low-Reynolds-number
flow achieved with a special elastic filament or artifical cilium attached to a
planar surface. The filament is made of superparamagnetic particles linked
together by DNA double strands. An external magnetic field induces dipolar
interactions between the beads of the filament which provides a convenient way
of actuating the cilium in a well-controlled manner. The filament has recently
been used to successfully construct the first artificial micro-swimmer [R.
Dreyfus at al., Nature 437, 862 (2005)]. In our numerical study we introduce a
measure, which we call pumping performance, to quantify the fluid transport
induced by the magnetically actuated cilium and identify an optimum stroke
pattern of the filament. It consists of a slow transport stroke and a fast
recovery stroke. Our detailed parameter study also reveals that for
sufficiently large magnetic fields the artificial cilium is mainly governed by
the Mason number that compares frictional to magnetic forces. Initial studies
on multi-cilia systems show that the pumping performance is very sensitive to
the imposed phase lag between neighboring cilia, i.e., to the details of the
initiated metachronal wave.Comment: 12 pages, 10 figures. To appear in EPJE, available online at
http://dx.doi.org/10.1140/epje/i2008-10388-
Alpha-tocopherol exerts protective function against the mucotoxicity of particulate matter in amphibian and human goblet cells
Exposure to particulate matter (PM) in ambient air is known to increase the risk of cardiovascular disorders and mortality. The cytotoxicity of PM is mainly due to the abnormal increase of reactive oxygen species (ROS), which damage cellular components such as DNA, RNA, and proteins. The correlation between PM exposure and human disorders, including mortality, is based on long-term exposure. In this study we have investigated acute responses of mucus-secreting goblet cells upon exposure to PM derived from a heavy diesel engine. To this end, we employed the mucociliary epithelium of amphibian embryos and human Calu-3 cells to examine PM mucotoxicity. Our data suggest that acute exposure to PM significantly impairs mucus secretion and results in the accumulation of mucus vesicles in the cytoplasm of goblet cells. RNA-seq analysis revealed that acute responses to PM exposure significantly altered gene expression patterns; however, known regulators of mucus production and the secretory pathway were not significantly altered. Interestingly, pretreatment with alpha-tocopherol nearly recovered the hyposecretion of mucus from both amphibian and human goblet cells. We believe this study demonstrates the mucotoxicity of PM and the protective function of alpha-tocopherol on mucotoxicity caused by acute PM exposure from heavy diesel engines
A boundary element regularised Stokeslet method applied to cilia and flagella-driven flow
A boundary element implementation of the regularised Stokeslet method of
Cortez is applied to cilia and flagella-driven flows in biology.
Previously-published approaches implicitly combine the force discretisation and
the numerical quadrature used to evaluate boundary integrals. By contrast, a
boundary element method can be implemented by discretising the force using
basis functions, and calculating integrals using accurate numerical or analytic
integration. This substantially weakens the coupling of the mesh size for the
force and the regularisation parameter, and greatly reduces the number of
degrees of freedom required. When modelling a cilium or flagellum as a
one-dimensional filament, the regularisation parameter can be considered a
proxy for the body radius, as opposed to being a parameter used to minimise
numerical errors. Modelling a patch of cilia, it is found that: (1) For a fixed
number of cilia, reducing cilia spacing reduces transport. (2) For fixed patch
dimension, increasing cilia number increases the transport, up to a plateau at
cilia. Modelling a choanoflagellate cell it is found that the
presence of a lorica structure significantly affects transport and flow outside
the lorica, but does not significantly alter the force experienced by the
flagellum.Comment: 20 pages, 7 figures, postprin
Cytoplasmic Carboxypeptidase 5 Regulates Tubulin Glutamylation and Zebrafish Cilia Formation and Function
Glutamylation is a functionally important tubulin posttranslational modification enriched on stable microtubules of neuronal axons, mitotic spindles, centrioles, and cilia. In vertebrates, balanced activities of tubulin glutamyl ligase and cytoplasmic carboxypeptidase deglutamylase enzymes maintain organelle- and cell type-specific tubulin glutamylation pat terns. Tubulin glutamylation in cilia is regulated via restricted subcellular localization or ex pression of tubulin glutamyl ligases (ttlls) and nonenzymatic proteins, including the zebrafish TPR repeat protein Fleer/Ift70. Here we analyze the expression patterns of ccp deglutamy lase genes during zebrafish development and the effects of ccp gene knockdown on cilia formation, morphology, and tubulin glutamylation. The deglutamylases ccp2, ccp5, and ccp6 are expressed in ciliated cells, whereas ccp1 expression is restricted to the nervous system. Only ccp5 knockdown increases cilia tubulin glutamylation, induces ciliopathy phenotypes, including axis curvature, hydrocephalus, and pronephric cysts, and disrupts multicilia motility, suggesting that Ccp5 is the principal tubulin deglutamylase that maintains functional levels of cilia tubulin glutamylation. The ability of ccp5 knockdown to restore cilia tubulin glutamyla tion in fleer/ift70 mutants and rescue pronephric multicilia formation in both fleer- and ift88-deficient zebrafish indicates that tubulin glutamylation is a key driver of ciliogenesis
Active beating of a reconstituted synthetic minimal axoneme
Propelling microorganisms through fluids and moving fluids along cellular surfaces are essential biological functions accomplished by long, thin structures called motile cilia and flagella, whose regular, oscillatory beating breaks the time-reversal symmetry required for transport. Although top-down experimental approaches and theoretical models have allowed us to broadly characterize such organelles and propose mechanisms underlying their complex dynamics, constructing minimal systems capable of mimicking ciliary beating and identifying the role of each component remains a challenge. Here we report the bottom-up assembly of a minimal synthetic axoneme, which we call a synthoneme, using biological building blocks from natural organisms, namely pairs of microtubules and cooperatively associated axonemal dynein motors. We show that upon provision of energy by ATP, microtubules undergo rhythmic bending by cyclic association-dissociation of dyneins. Our simple and unique beating minimal synthoneme represents a self-organized nanoscale biomolecular machine that can also help understand the mechanisms underlying ciliary beating
Truncation of POC1A associated with short stature and extreme insulin resistance.
We describe a female proband with primordial dwarfism, skeletal dysplasia, facial dysmorphism, extreme dyslipidaemic insulin resistance and fatty liver associated with a novel homozygous frameshift mutation in POC1A, predicted to affect two of the three protein products of the gene. POC1A encodes a protein associated with centrioles throughout the cell cycle and implicated in both mitotic spindle and primary ciliary function. Three homozygous mutations affecting all isoforms of POC1A have recently been implicated in a similar syndrome of primordial dwarfism, although no detailed metabolic phenotypes were described. Primary cells from the proband we describe exhibited increased centrosome amplification and multipolar spindle formation during mitosis, but showed normal DNA content, arguing against mitotic skipping, cleavage failure or cell fusion. Despite evidence of increased DNA damage in cells with supernumerary centrosomes, no aneuploidy was detected. Extensive centrosome clustering both at mitotic spindles and in primary cilia mitigated the consequences of centrosome amplification, and primary ciliary formation was normal. Although further metabolic studies of patients with POC1A mutations are warranted, we suggest that POC1A may be added to ALMS1 and PCNT as examples of centrosomal or pericentriolar proteins whose dysfunction leads to extreme dyslipidaemic insulin resistance. Further investigation of links between these molecular defects and adipose tissue dysfunction is likely to yield insights into mechanisms of adipose tissue maintenance and regeneration that are critical to metabolic health.This work was supported by the Wellcome Trust [grant numbers WT098498, WT098051,WT095515, and WT091310]; the Medical Research Council [MRC_MC_UU_12012/5]; the United Kingdom National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre.This is the final version of the article. It first appeared from Bioscientifica via http://dx.doi.org/10.1530/JME-15-009
Calaxin is required for cilia-driven determination of vertebrate laterality
Sasaki, K., Shiba, K., Nakamura, A. et al. Calaxin is required for cilia-driven determination of vertebrate laterality. Commun Biol 2, 226 (2019). https://doi.org/10.1038/s42003-019-0462-