2,387,604 research outputs found
Multidimensional Membership Mixture Models
We present the multidimensional membership mixture (M3) models where every
dimension of the membership represents an independent mixture model and each
data point is generated from the selected mixture components jointly. This is
helpful when the data has a certain shared structure. For example, three unique
means and three unique variances can effectively form a Gaussian mixture model
with nine components, while requiring only six parameters to fully describe it.
In this paper, we present three instantiations of M3 models (together with the
learning and inference algorithms): infinite, finite, and hybrid, depending on
whether the number of mixtures is fixed or not. They are built upon Dirichlet
process mixture models, latent Dirichlet allocation, and a combination
respectively. We then consider two applications: topic modeling and learning 3D
object arrangements. Our experiments show that our M3 models achieve better
performance using fewer topics than many classic topic models. We also observe
that topics from the different dimensions of M3 models are meaningful and
orthogonal to each other.Comment: 9 pages, 7 figure
Generative linear mixture modelling.
For multivariate data with a lowâdimensional latent structure, a novel
approach to linear dimension reduction based on Gaussian mixture models is pro-
posed. A generative model is assumed for the data, where the mixture centres
(or âmass pointsâ) are positioned along lines or planes spanned through the data
cloud. All involved parameters are estimated simultaneously through the EM al-
gorithm, requiring an additional iteration within each M-step. Data points can be
projected onto the lowâdimensional space by taking the posterior mean over the
estimated mass points. The compressed data can then be used for further pro-
cessing, for instance as a lowâdimensional predictor in a multivariate regression
problem
Deep Gaussian Mixture Models
Deep learning is a hierarchical inference method formed by subsequent
multiple layers of learning able to more efficiently describe complex
relationships. In this work, Deep Gaussian Mixture Models are introduced and
discussed. A Deep Gaussian Mixture model (DGMM) is a network of multiple layers
of latent variables, where, at each layer, the variables follow a mixture of
Gaussian distributions. Thus, the deep mixture model consists of a set of
nested mixtures of linear models, which globally provide a nonlinear model able
to describe the data in a very flexible way. In order to avoid
overparameterized solutions, dimension reduction by factor models can be
applied at each layer of the architecture thus resulting in deep mixtures of
factor analysers.Comment: 19 pages, 4 figure
Multivariate normal mixture GARCH
We present a multivariate generalization of the mixed normal GARCH model proposed in Haas, Mittnik, and Paolella (2004a). Issues of parametrization and estimation are discussed. We derive conditions for covariance stationarity and the existence of the fourth moment, and provide expressions for the dynamic correlation structure of the process. These results are also applicable to the single-component multivariate GARCH(p, q) model and simplify the results existing in the literature. In an application to stock returns, we show that the disaggregation of the conditional (co)variance process generated by our model provides substantial intuition, and we highlight a number of findings with potential significance for portfolio selection and further financial applications, such as regime-dependent correlation structures and leverage effects. Klassifikation: C32, C51, G10, G11Die vorliegende Arbeit ist einer multivariaten Verallgemeinerung des sog. Normal Mixture GARCH Modells gewidmet, dessen univariate Variante von Haas, Mittnik und Paolella (2004a, siehe auch CFS Working Paper 2002/10) vorgeschlagen wurde. Dieses Modell unterscheidet sich von traditionellen GARCH-AnsĂ€tzen insbesondere dadurch, dass es eine AbhĂ€ngigkeit der Risikoentwicklung von - typischerweise unbeobachtbaren - MarktzustĂ€nden explizit in Rechnung stellt. Dies wird durch die Beobachtung motiviert, dass das weit verbreitete GARCH Modell in seiner Standardvariante auch dann keine adĂ€quate Beschreibung der Risikodynamik leistet, wenn die Normalverteilung durch flexiblere bedingte Verteilungen ersetzt wird. ZustandsabhĂ€ngige VolatilitĂ€tsprozesse können etwa durch die variierende Dominanz heterogener Marktteilnehmer oder durch wechselnde Marktstimmungen ökonomisch zu erklĂ€ren sein. Anwendungen des Normal Mixture GARCH Modells auf zahlreiche Aktien- und Wechselkurszeitreihen (siehe z.B. Alexander und Lazar, 2004, 2005; und Haas, Mittnik und Paolella, 2004a,b) haben gezeigt, dass es sich zur Modellierung und Prognose des VolatilitĂ€tsprozesses der Renditen solcher Aktiva hervorragend eignet. Indes beschrĂ€nken sich diese Analysen bisher auf die Untersuchung univariater Zeitreihen. Zahlreiche Probleme der Finanzwirtschaft erfordern jedoch zwingend eine multivariate Modellierung, mithin also eine Beschreibung der AbhĂ€ngigkeitsstruktur zwischen den Renditen verschiedener Wertpapiere. Insbesondere fĂŒr solche Analysen erweist sich der Mischungsansatz aber als besonders vielversprechend. So spielen etwa im Portfoliomanagement die Korrelationen zwischen einzelnen Wertpapierrenditen eine herausragende Rolle. Die StĂ€rke der Korrelationen ist von entscheidender Bedeutung dafĂŒr, in welchem AusmaĂ das Risiko eines effizienten Portfolios durch Diversifikation reduziert werden kann. Nun gibt es empirische Hinweise darauf, dass die Korrelationen etwa zwischen Aktien in Perioden, die durch starke Marktschwankungen und tendenziell fallende Kurse charakterisiert sind, stĂ€rker sind als in ruhigeren Perioden. Das bedeutet, dass die Vorteile der Diversifikation in genau jenen Perioden geringer sind, in denen ihr Nutzen am gröĂten wĂ€re. Modelle, die die Existenz unterschiedlicher Marktregime nicht berĂŒcksichtigen, werden daher dazu tendieren, die Korrelationen in den adversen MarktzustĂ€nden zu unterschĂ€tzen. Dies kann zu erheblichen FehleinschĂ€tzungen des tatsĂ€chlichen Risikos wĂ€hrend solcher Perioden fĂŒhren. Diese und weitere Implikationen des Mischungsansatzes im Kontext multivariater GARCH Modelle werden in der vorliegenden Arbeit diskutiert, und ihre Relevanz wird anhand einer empirischen Anwendung dokumentiert. Erörtert werden ferner Fragen der Parametrisierung und SchĂ€tzung des Modells, und einige relevante theoretische Eigenschaften werden hergeleitet
Generative Mixture of Networks
A generative model based on training deep architectures is proposed. The
model consists of K networks that are trained together to learn the underlying
distribution of a given data set. The process starts with dividing the input
data into K clusters and feeding each of them into a separate network. After
few iterations of training networks separately, we use an EM-like algorithm to
train the networks together and update the clusters of the data. We call this
model Mixture of Networks. The provided model is a platform that can be used
for any deep structure and be trained by any conventional objective function
for distribution modeling. As the components of the model are neural networks,
it has high capability in characterizing complicated data distributions as well
as clustering data. We apply the algorithm on MNIST hand-written digits and
Yale face datasets. We also demonstrate the clustering ability of the model
using some real-world and toy examples.Comment: 9 page
- âŠ