163,010 research outputs found

    Contrasting patterns of selection between MHC I and II across populations of Humboldt and Magellanic penguins

    Get PDF
    Indexación: Web of ScienceThe evolutionary and adaptive potential of populations or species facing an emerging infectious disease depends on their genetic diversity in genes, such as the major histocompatibility complex (MHC). In birds, MHC class I deals predominantly with intracellular infections (e.g., viruses) and MHC class II with extracellular infections (e.g., bacteria). Therefore, patterns of MHC I and II diversity may differ between species and across populations of species depending on the relative effect of local and global environmental selective pressures, genetic drift, and gene flow. We hypothesize that high gene flow among populations of Humboldt and Magellanic penguins limits local adaptation in MHC I and MHC II, and signatures of selection differ between markers, locations, and species. We evaluated the MHC I and II diversity using 454 next-generation sequencing of 100 Humboldt and 75 Magellanic penguins from seven different breeding colonies. Higher genetic diversity was observed in MHC I than MHC II for both species, explained by more than one MHC I loci identified. Large population sizes, high gene flow, and/or similar selection pressures maintain diversity but limit local adaptation in MHC I. A pattern of isolation by distance was observed for MHC II for Humboldt penguin suggesting local adaptation, mainly on the northernmost studied locality. Furthermore, trans species alleles were found due to a recent speciation for the genus or convergent evolution. High MHC I and MHC II gene diversity described is extremely advantageous for the long term survival of the species.http://onlinelibrary.wiley.com/doi/10.1002/ece3.2502/epd

    The E5 oncoprotein of BPV-4 does not interfere with the biosynthetic pathway of non-classical MHC class I

    Get PDF
    The major histocompatibility complex (MHC) class I region in mammals contains both classical and non-classical MHC class I genes. Classical MHC class I molecules present antigenic peptides to cytotoxic T lymphocytes, whereas non-classical MHC class I molecules have a variety of functions. Both classical and non-classical MHC molecules interact with natural killer cell receptors and may under some circumstances prevent cell death by natural killer cytotoxicity. The E5 oncoprotein of BPV-4 down-regulates the expression of classical MHC class I on the cell surface and retains the complex in the Golgi apparatus. The inhibition of classical MHC class I to the cell surface results from both the impaired acidification of the Golgi, due to the interaction of E5 with subunit c of the H+ V-ATPase, and to the physical binding of E5 to the heavy chain of MHC class I. Despite the profound effect of E5 on classical MHC class I, E5 does not retain a non-classical MHC class I in the Golgi, does not inhibit its transport to the cell surface and does not bind its heavy chain. We conclude that, as is the case for HPV-16 E5, BPV-4 E5 does not down-regulate certain non-classical MHC class I, potentially providing a mechanism for the escape of the infected cell from attack by both cytotoxic T lymphocytes and NK cells

    Smooth Muscle Myosin Heavy Chain Isoform Distribution in the Swine Stomach

    Get PDF
    To evaluate the distribution of smooth muscle myosin heavy chain isoforms (SMB, with head insert), we examined frozen sections from the various regions of swine stomachs using isoform-specific antibodies. We previously reported variable SMB myosin heavy chain (MHC) expression in stomach cells that correlates with unloaded shortening velocities. This is consistent with the generalization of tonic fundic muscle having low expression and phasic antral muscle having high expression of the SMB MHC isoform. Using immunohistochemistry (IHC), we show a progression of the SMB MHC from very low immunoreactivity in the fundus to very intense immunoreactivity in the antrum. In the body, the average level of SMB MHC immunoreactivity lies between that of the antrum and fundus. Intercellular heterogeneity was observed in all stomach regions to a similar extent. However, the intercellular range in SMB MHC immunoreactivity decreases from fundus to antrum. All stomach regions show isolated pockets or clusters of cells with similar SMB MHC immunoreactivity. There is a non-uniform intracellular immunoreactivity in SMB MHC, with many cells showing greater-intensity staining of SMB MHC in their cell peripheries. This information may prove useful in helping to elucidate possible unique physiological roles of SMB MHC

    The E5 protein of BPV-4 interacts with the heavy chain of MHC class I and irreversibly retains the MHC complex in the Golgi apparatus

    Get PDF
    BPV-4 E5 inhibits transcription of the bovine MHC class I heavy chain (HC) gene, increases degradation of HC and downregulates surface expression of MHC class I by retaining the complex in the Golgi apparatus (GA). Here we report that transcription inhibition can be alleviated by interferon treatment and the degradation of HC can be reversed by treatment with inhibitors of proteasomes and lysosomes. However, the inhibition of transport of MHC class I to the cell surface is irreversible. We show that E5 is capable of physically interacting with HC. Together with the inhibition of the vacuolar ATPase (due to the interaction between E5 and 16k subunit c), the interaction between E5 and HC is likely to be responsible for retention of MHC class I in the GA. C-terminus deletion mutants of E5 are incapable of either downregulating surface MHC class I or interacting with HC, establishing that the C-terminus domain of E5 is important in the inhibition of MHC class I

    Structure of a Pheromone Receptor-Associated MHC Molecule with an Open and Empty Groove

    Get PDF
    Neurons in the murine vomeronasal organ (VNO) express a family of class Ib major histocompatibility complex (MHC) proteins (M10s) that interact with the V2R class of VNO receptors. This interaction may play a direct role in the detection of pheromonal cues that initiate reproductive and territorial behaviors. The crystal structure of M10.5, an M10 family member, is similar to that of classical MHC molecules. However, the M10.5 counterpart of the MHC peptide-binding groove is open and unoccupied, revealing the first structure of an empty class I MHC molecule. Similar to empty MHC molecules, but unlike peptide-filled MHC proteins and non-peptide–binding MHC homologs, M10.5 is thermally unstable, suggesting that its groove is normally occupied. However, M10.5 does not bind endogenous peptides when expressed in mammalian cells or when offered a mixture of class I–binding peptides. The F pocket side of the M10.5 groove is open, suggesting that ligands larger than 8–10-mer class I–binding peptides could fit by extending out of the groove. Moreover, variable residues point up from the groove helices, rather than toward the groove as in classical MHC structures. These data suggest that M10s are unlikely to provide specific recognition of class I MHC–binding peptides, but are consistent with binding to other ligands, including proteins such as the V2Rs

    Expression of MHC II genes

    Full text link
    Innate and adaptive immunity are connected via antigen processing and presentation (APP), which results in the presentation of antigenic peptides to T cells in the complex with the major histocompatibility (MHC) determinants. MHC class II (MHC II) determinants present antigens to CD4+ T cells, which are the main regulators of the immune response. Their genes are transcribed from compact promoters that form first the MHC II enhanceosome, which contains DNA-bound activators and then the MHC II transcriptosome with the addition of the class II transactivator (CIITA). CIITA is the master regulator of MHC II transcription. It is expressed constitutively in dendritic cells (DC) and mature B cells and is inducible in most other cell types. Three isoforms of CIITA exist, depending on cell type and inducing signals. CIITA is regulated at the levels of transcription and post-translational modifications, which are still not very clear. Inappropriate immune responses are found in several diseases, including cancer and autoimmunity. Since CIITA regulates the expression of MHC II genes, it is involved directly in the regulation of the immune response. The knowledge of CIITA will facilitate the manipulation of the immune response and might contribute to the treatment of these diseases

    Constitutive CD8 expression allows inefficient maturation of CD4+ helper T cells in class II major histocompatibility complex mutant mice.

    Get PDF
    Although mature CD4+ T cells bear T cell receptors (TCRs) that recognize class II major histocompatibility complex (MHC) and mature CD8+ T cells bear TCRs that recognize class I MHC, it is possible that the initial commitment of an immature thymocyte to a CD4 or CD8 lineage is made without regard to the specificity of the TCR. According to this model, CD4+ cells with class I TCR do not mature because the CD8 coreceptor is required for class I MHC recognition and positive selection. If this model is correct, constitutive expression of CD8 should allow CD4+ T cells with class I-specific TCRs to develop. In this report, we show that mature peripheral CD4+ cells are present in class II MHC-deficient mice that express a constitutive CD8.1 transgene. These cells share a number of properties with the major class II MHC-selected CD4 population, including the ability to express CD40 ligand upon activation. Although mature CD4 cells are also detectable in the thymus of class II MHC mutant/CD8.1 transgenic mice, they represent a small fraction of the mature CD4 cells found in mice that express class II MHC. These results indicate that some T cells choose the CD4 helper lineage independent of their antigen receptor specificity; however, the inefficiency of generating class I-specific CD4 cells leaves open the possibility that an instructive signal generated upon MHC recognition may bias lineage commitment
    • …
    corecore