16,922 research outputs found

    Synthesis and conformations of [2.n]metacyclophan-1-ene epoxides and their conversion to [n.1]metacyclophanes

    Get PDF
    A series of syn- and anti-[2.n]metacyclophan-1-enes have been prepared in good yields by McMurry cyclizations of 1,n-bis(5-tert-butyl-3-formyl-2-methoxyphenyl)alkanes. Significantly, acid catalyzed rearrangements of [2.n]metacyclophan-1-enes afforded [n.1]metacyclophanes in good yield. The ratios of the products are strongly regulated by the number of methylene bridges present. The percentages of the rearrangement products increase with increasing length of the carbon bridges. Characterization and the conformational studies of these products are described. Single crystal X-ray analysis revealed the adoption of syn- and anti-conformations. DFT calculations were carried out to estimate the energy-minimized structures of the synthesized metacyclophanes

    Effect of the C-bridge length on the ultraviolet-resistance of oxycarbosilane low-k films

    Get PDF
    The ultra-violet (UV) and vacuum ultra-violet (VUV) resistance of bridging alkylene groups in organosilica films has been investigated. Similar to the Si-CH3 (methyl) bonds, the Si-CH2-Si (methylene) bonds are not affected by 5.6 eV irradiation. On the other hand, the concentration of the Si-CH2-CH2-Si (ethylene) groups decreases during such UV exposure. More significant difference in alkylene reduction is observed when the films are exposed to VUV (7.2 eV). The ethylene groups are depleted by more than 75% while only about 40% methylene and methyl groups loss is observed. The different sensitivity of bridging groups to VUV light should be taken into account during the development of curing and plasma etch processes of low-k materials based on periodic mesoporous organosilicas and oxycarbosilanes. The experimental results are qualitatively supported by ab-initio quantum-chemical calculations

    The role of the enzyme in the succinate-enzyme-fumarate equilibrium

    Get PDF
    The following is an account of an investigation into the role of the enzyme in the succinate-enzyme-fumarate equilibrium. The method consisted in the comparison of the value of the free energy change in this reaction obtained from oxidation-reduction potentials, with that calculated from the entropies and other physicochemical properties of succinic acid and fumaric acid

    Synthesis and conformational studies of chiral macrocyclic [1.1.1]metacyclophanes containing benzofuran rings

    Get PDF
    Macrocyclic [1.1.1]metacyclophanes (MCPs) containing benzene and benzofuran rings linked by methylene bridges and which can be viewed as calixarene analogues, have been synthesized by demethylation of [3.3.1]MCP-diones with trimethylsilyl iodide (TMSI) in MeCN. The [3.3.1]MCP-diones are synthesized by using (p-tolylsulfonyl)methyl isocyanide (TosMIC) as the cyclization reagent in N,N-dimethylformamide (DMF) with an excess of sodium hydride. ¹H NMR spectroscopy revealed that the remaining hydroxyl group on the phenyl ring is involved in intramolecular hydrogen bonding with the oxygen of one of the benzofuran rings. O-Methylation at the lower rim of monohydroxy[1.1.1]MCP in the presence of K₂CO₃ in acetone afforded a novel and inherently chiral calixarene analogue, namely the macrocyclic [1.1.1]MCP, possessing C₁ symmetry. The inherent chirality of the two conformers was characterized by ¹H NMR spectroscopy by addition of an excess of Pirkle's chiral shift reagent, which caused a splitting of the corresponding methylene protons to AB patterns. Single crystal X-ray analysis revealed the adoptation of a hemisphere-shaped cone isomer. DFT calculations were carried out to investigate the energy-minimized structures and the hydrogen bonds of the synthesized MCPs

    FTIR spectroscopic and thermogravimetric characterization of ground tyre rubber devulcanized by microwave treatment

    Get PDF
    In this work the phenomena involved with the microwave devulcanization of ground tyre rubber (GTR) were investigated. During studies three types of GTR characterized by different content of organic compounds (elastomers, plasticizers, etc..), carbon black and ash have been analyzed. The chemical structure of GTR before and after microwave devulcanization process was studied by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Furthermore, efficiency of microwave devulcanization conducted at different time was evaluated based on the crosslinking density and sol content values. FTIR spectroscopy results shown that devulcanization of GTR causes a decrease in carbon black with generation of CO2 due to its thermo oxidation, a decrease in structural groups of elastomeric components (mainly methylene and methine) and a breaking of C-S groups and S-S bridges. The presented results indicate the strong correlation between content of SiO2 in GTR and its degree of devulcanization. It was observed that GTR with a high content of SiO2 are easier devulcanized than samples with low content of SiO2, which suggest the presence of silica fillers improve microwave devulcanization efficiencyPostprint (author's final draft

    Identifying and mapping chemical bonding within phenolic resin using Secondary Electron Hyperspectral Imaging

    Get PDF
    The distributions of methylene and ether bridges have been shown to impact the mechanical properties of phenolic resin. This work demonstrates the ability of the novel SEM based technique, Secondary Electron Hyperspectral Imaging (SEHI), to characterise and map methylene and ether bridges within phenolic resin at the nanoscale

    Metallocalixarene catalysts: α-olefin polymerization and ROP of cyclic esters

    Get PDF
    This perspective review discusses metallocalix[n]arene complexes that have been employed in either α-olefin polymerization or in the ring opening polymerization (ROP) of cyclic esters over the last 5 years. Synthesis, molecular structure and catalytic potential are discussed. For α-olefin polymerization, systems based on early transition metals in combination with calix[n]arenes (n = 4, 6 or 8), depleted calix[4]arenes or thia/sulfinyl/sulfonyl calix[4]arenes have been reported, and in some cases, are highly active. For the ROP studies, a number of the systems, typically of the early transition metals, only exhibit activity under robust conditions, whereas other systems, for example those of magnesium, demonstrate exceptional activity, immortal behaviour and intriguing stereoselectivity

    Probing pattern and dynamics of disulfide bridges using synthesis and NMR of an ion channel blocker peptide toxin with multiple diselenide bonds

    Get PDF
    Anuroctoxin (AnTx), a 35-amino-acid scorpion toxin containing four disulfide bridges, is a high affinity blocker of the voltage-gated potassium channel Kv1.3, but also blocks Kv1.2. To improve potential therapeutic use of the toxin, we have designed a double substituted analog, [N17A/F32T]-AnTx, which showed comparable Kv1.3 affinity to the wild-type peptide, but also a 2500-fold increase in the selectivity for Kv1.3 over Kv1.2. In the present study we have achieved the chemical synthesis of a Sec-analog in which all cysteine (Cys) residues have been replaced by selenocysteine (Sec) forming four diselenide bonds. To the best of our knowledge this is the first time to replace, by chemical synthesis, all disulfide bonds with isosteric diselenides in a peptide/protein. Gratifyingly, the key pharmacological properties of the Sec-[N17A/F32T]-AnTx are retained since the peptide is functionally active. We also propose here a combined experimental and theoretical approach including NOE- and Se-77-based NMR supplemented by MD simulations for conformational and dynamic characterization of the Sec-[N17A/F32T]-AnTx. Using this combined approach allowed us to attain unequivocal assignment of all four diselenide bonds and supplemental MD simulations allowed characterization of the conformational dynamics around each disulfide/diselenide bridge
    corecore