3,920 research outputs found

    Liquid crystalline properties of unsymmetrically substituted phthalocyanines: structural features leading to nematic mesophase materials

    Get PDF
    A novel homologous series of four 1,4,8,11,15,18-hexakis(pentyl)-22-methyl-25-hydroxyalkylphthalocyanine derivatives with the hydroxyalkyl chain varying from hydroxynonyl through to hydroxydodecyl has been synthesized to investigate the role of the hydroxyalkyl chain in promoting thermotropic liquid crystalline behavior. Polarizing optical miscoscopy reveals that the compound with the shortest hydroxyalkyl chain (hydroxynonyl) exhibits a mesophase with a texture characteristic of a columnar mesophase, common among liquid crystalline phthalocyanine derivatives. However, as the chain is lengthened along the series, there appears a second type of mesophase that shows a schlieren texture. Such a texture is characteristic of a nematic phase and rare among liquid crystalline phthalocyanine derivatives. A fifth compound, the novel 1,4,8,11,15,18-hexakis(pentyl)-22-methyl-25- dodecylphthalocyanine, exhibits only columnar mesophase behavior suggesting that the hydroxyl group at the end of the longer chains of the former compounds is important in developing the nematic phase

    Interplay between Mesoscopic and Microscopic Fluctuations in Ferromagnets

    Full text link
    A model of a ferromagnet is considered, in which there arise mesoscopic fluctuations of paramagnetic phase. The presence of these fluctuations diminishes the magnetization of the ferromagnet, softens the spin-wave spectrum, increases the spin-wave attenuation, shortens the magnon free path, lowers the critical point, and can change the order of phase transition. A special attention is paid to the interplay between these mesoscopic paramagnetic fluctuations and microscopic fluctuations due to magnons. One of the main results of this interplay is an essential extension of the region of parameters where the ferromagnet-paramagnet phase transition is of first order.Comment: 1 file, 19 pages, LaTe

    Non-isothermal model for the direct isotropic/smectic-A liquid crystalline transition

    Full text link
    An extension to a high-order model for the direct isotropic/smectic-A liquid crystalline phase transition was derived to take into account thermal effects including anisotropic thermal diffusion and latent heat of phase-ordering. Multi-scale multi-transport simulations of the non-isothermal model were compared to isothermal simulation, showing that the presented model extension corrects the standard Landau-de Gennes prediction from constant growth to diffusion-limited growth, under shallow quench/undercooling conditions. Non-isothermal simulations, where meta-stable nematic pre-ordering precedes smectic-A growth, were also conducted and novel non-monotonic phase-transformation kinetics observed.Comment: First revision: 20 pages, 7 figure

    A π-Extended Donor-Acceptor-Donor Triphenylene Twin linked via a Pyrazine-bridge

    Get PDF
    Beta-amino triphenylenes can be accessed via palladium catalyzed amination of the corresponding triflate using benzophe-none imine. Transformation of amine 6 to benzoyl amide 18 is also straightforward and its wide mesophase range demon-strates that the new linkage supports columnar liquid crystal formation. Amine 6 also undergoes clean aerobic oxidation to give a new twinned structure linked through an electron-poor pyrazine ring. The new discotic liquid crystal motif contains donor and acceptor fragments, and is more oval in shape rather than disk-like. It forms a wide range columnar mesophase. Absorption spectra are strong and broad; emission is also broad and occurs with a Stokes shift of ca. 0.7 eV, indicative of charge-transfer characte

    Mesophases in Nearly 2D Room-Temperature Ionic Liquids

    Get PDF
    Computer simulations of (i) a [C12mim][Tf2N] film of nanometric thickness squeezed at kbar pressure by a piecewise parabolic confining potential reveal a mesoscopic in-plane density and composition modulation reminiscent of mesophases seen in 3D samples of the same room-temperature ionic liquid (RTIL). Near 2D confinement, enforced by a high normal load, relatively long aliphatic chains are strictly required for the mesophase formation, as confirmed by computations for two related systems made of (ii) the same [C12mim][Tf2N] adsorbed at a neutral solid surface and (iii) a shorter-chain RTIL ([C4mim][Tf2N]) trapped in the potential well of part i. No in-plane modulation is seen for ii and iii. In case ii, the optimal arrangement of charge and neutral tails is achieved by layering parallel to the surface, while, in case iii, weaker dispersion and packing interactions are unable to bring aliphatic tails together into mesoscopic islands, against overwhelming entropy and Coulomb forces. The onset of in-plane mesophases could greatly affect the properties of long-chain RTILs used as lubricants.Comment: 24 pages 10 figure
    • …
    corecore