822,188 research outputs found
Rampant exchange of the structure and function of extramembrane domains between membrane and water soluble proteins.
Of the membrane proteins of known structure, we found that a remarkable 67% of the water soluble domains are structurally similar to water soluble proteins of known structure. Moreover, 41% of known water soluble protein structures share a domain with an already known membrane protein structure. We also found that functional residues are frequently conserved between extramembrane domains of membrane and soluble proteins that share structural similarity. These results suggest membrane and soluble proteins readily exchange domains and their attendant functionalities. The exchanges between membrane and soluble proteins are particularly frequent in eukaryotes, indicating that this is an important mechanism for increasing functional complexity. The high level of structural overlap between the two classes of proteins provides an opportunity to employ the extensive information on soluble proteins to illuminate membrane protein structure and function, for which much less is known. To this end, we employed structure guided sequence alignment to elucidate the functions of membrane proteins in the human genome. Our results bridge the gap of fold space between membrane and water soluble proteins and provide a resource for the prediction of membrane protein function. A database of predicted structural and functional relationships for proteins in the human genome is provided at sbi.postech.ac.kr/emdmp
The Bacterial Photosynthetic Reaction Center as a Model for Membrane Proteins
Membrane proteins participate in many fundamental cellular processes. Until recently, an understanding of the function and properties of membrane proteins was hampered by an absence of structural information at the atomic level. A landmark achievement toward understanding the structure of membrane proteins was the crystallization (1) and structure determination (2-5) the photosynthetic reaction center (RC) from the purple bacteria Rhodopseudomonas viridis, followed by that of the RC from Rhodobacter sphaeroides (6-17). The RC is an integral membrane protein-pigment complex, which carries out the initial steps of photosynthesis (reviewed in 18). RCs from the purple bacteria Rps. viridis and Rb. sphaeroides are composed of three membrane-associated protein subunits (designated L, M, and H), and the following cofactors: four bacteriochlorophylls (Bchl or B), two bacteriopheophytins (Bphe or [phi]), two quinones, and a nonheme iron. The cofactors are organized into two symmetrical branches that are approximately related by a twofold rotation axis (2, 8). A central feature of the structural organization of the RC is the presence of 11 hydrophobic [alpha]-helixes, approximately 20-30 residues long, which are believed to represent the membrane-spanning portion of the RC (3, 9). Five membrane-spanning helixes are present in both the L and M subunits, while a single helix is in the H subunit. The folding of the L and M subunits is similar, consistent with significant sequence similarity between the two chains (19-25). The L and M subunits are approximately related by the same twofold rotation axis that relates the two cofactor branches.
RCs are the first membrane proteins to be described at atomic resolution; consequently they provide an important model for discussing the folding of membrane proteins. The structure demonstrates that [alpha]-helical structures may be adopted by integral membrane proteins, and provides confirmation of the utility of hydropathy plots in identifying nonpolar membrane-spanning regions from sequence data. An important distinction between the folding environments of water-soluble proteins and membrane proteins is the large difference in water concentration surrounding the proteins. As a result, hydrophobic interactions (26) play very different roles in stabilizing the tertiary structures of these two classes of proteins; this has important structural consequences. There is a striking difference in surface polarity of membrane and water-soluble proteins. However, the characteristic atomic packing and surface area appear quite similar.
A computational method is described for defining the position of the RC in the membrane (10). After localization of the RC structure in the membrane, surface residues in contact with the lipid bilayer were identified. As has been found for soluble globular proteins, surface residues are less well conserved in homologous membrane proteins than the buried, interior residues. Methods based on the variability of residues between homologous proteins are described (13); they are useful (a) in defining surface helical regions of membrane and water-soluble proteins and (b) in assigning the side of these helixes that are exposed to the solvent. A unifying view of protein structure suggests that water-soluble proteins may be considered as modified membrane proteins with covalently attached polar groups that solubilize the proteins in aqueous solution
Membrane proteins and proteomics: Love is possible, but so difficult
Despite decades of extensive research, the large-scale analysis of membrane
proteins remains a difficult task. This is due to the fact that membrane
proteins require a carefully balanced hydrophilic and lipophilic environment,
which optimum varies with different proteins, while most protein chemistry
methods work mainly, if not only, in water-based media. Taking this review
[Santoni, Molloy and Rabilloud, Membrane proteins and proteomics: un amour
impossible? Electrophoresis 2000, 21, 1054-1070] as a pivotal paper, the
current paper analyzes how the field of membrane proteomics exacerbated the
trend in proteomics, i.e. developing alternate methods to the historical
two-dimensional electrophoresis, and thus putting more and more pressure on the
mass spectrometry side. However, in the case of membrane proteins, the
incentive in doing so is due to the poor solubility of membrane proteins. This
review also shows that in some situations, where this solubility problem is
less acute, two-dimensional electrophoresis remains a method of choice. Last
but not least, this review also critically examines the alternate approaches
that have been used for the proteomic analysis of membrane proteins
A Continuum Poisson-Boltzmann Model for Membrane Channel Proteins
Membrane proteins constitute a large portion of the human proteome and
perform a variety of important functions as membrane receptors, transport
proteins, enzymes, signaling proteins, and more. The computational studies of
membrane proteins are usually much more complicated than those of globular
proteins. Here we propose a new continuum model for Poisson-Boltzmann
calculations of membrane channel proteins. Major improvements over the existing
continuum slab model are as follows: 1) The location and thickness of the slab
model are fine-tuned based on explicit-solvent MD simulations. 2) The highly
different accessibility in the membrane and water regions are addressed with a
two-step, two-probe grid labeling procedure, and 3) The water pores/channels
are automatically identified. The new continuum membrane model is optimized (by
adjusting the membrane probe, as well as the slab thickness and center) to best
reproduce the distributions of buried water molecules in the membrane region as
sampled in explicit water simulations. Our optimization also shows that the
widely adopted water probe of 1.4 {\AA} for globular proteins is a very
reasonable default value for membrane protein simulations. It gives an overall
minimum number of inconsistencies between the continuum and explicit
representations of water distributions in membrane channel proteins, at least
in the water accessible pore/channel regions that we focus on. Finally, we
validate the new membrane model by carrying out binding affinity calculations
for a potassium channel, and we observe a good agreement with experiment
results.Comment: 40 pages, 6 figures, 5 table
Evaluation of four different strategies to characterize plasma membrane proteins from banana roots
Plasma membrane proteins constitute a very important class of proteins. They are involved in the transmission of external signals to the interior of the cell and selective transport of water, nutrients and ions across the plasma membrane. However, the study of plasma membrane proteins is challenging because of their poor solubility in aqueous media and low relative abundance. In this work, we evaluated four different strategies for the characterization of plasma membrane proteins from banana roots: (i) the aqueous-polymer two-phase system technique (ATPS) coupled to gelelectrophoresis (gel-based), and (ii) ATPS coupled to LC-MS/MS (gel free), (iii) a microsomal fraction and (iv) a full proteome, both coupled to LC-MS/ MS. Our results show that the gel-based strategy is useful for protein visualization but has major limitations in terms of time reproducibility and efficiency. From the gel-free strategies, the microsomal-based strategy allowed the highest number of plasma membrane proteins to be identified, followed by the full proteome strategy and by the ATPS based strategy. The high yield of plasma membrane proteins provided by the microsomal fraction can be explained by the enrichment of membrane proteins in this fraction and the high throughput of the gel-free approach combined with the usage of a fast high-resolution mass spectrometer for the identification of proteins
Plasma Membrane-Associated Restriction Factors and Their Counteraction by HIV-1 Accessory Proteins.
The plasma membrane is a site of conflict between host defenses and many viruses. One aspect of this conflict is the host's attempt to eliminate infected cells using innate and adaptive cell-mediated immune mechanisms that recognize features of the plasma membrane characteristic of viral infection. Another is the expression of plasma membrane-associated proteins, so-called restriction factors, which inhibit enveloped virions directly. HIV-1 encodes two countermeasures to these host defenses: The membrane-associated accessory proteins Vpu and Nef. In addition to inhibiting cell-mediated immune-surveillance, Vpu and Nef counteract membrane-associated restriction factors. These include BST-2, which traps newly formed virions at the plasma membrane unless counteracted by Vpu, and SERINC5, which decreases the infectivity of virions unless counteracted by Nef. Here we review key features of these two antiviral proteins, and we review Vpu and Nef, which deplete them from the plasma membrane by co-opting specific cellular proteins and pathways of membrane trafficking and protein-degradation. We also discuss other plasma membrane proteins modulated by HIV-1, particularly CD4, which, if not opposed in infected cells by Vpu and Nef, inhibits viral infectivity and increases the sensitivity of the viral envelope glycoprotein to host immunity
Insertion of proteins into the inner membrane of mitochondria: the role of the Oxa1 complex
The inner mitochondrial membrane harbors a large number of proteins that display a wide range of topological arrangements. The majority of these proteins are encoded in the cell\u27s nucleus, but a few polytopic proteins, all subunits of respiratory chain complexes are encoded by the mitochondrial genome. A number of distinct sorting mechanisms exist to direct these proteins into the mitochondrial inner membrane. One of these pathways involves the export of proteins from the matrix into the inner membrane and is used by both proteins synthesized within the mitochondria, as well as by a subset of nuclear encoded proteins. Prior to embarking on the export pathway, nuclear encoded proteins using this sorting route are initially imported into the mitochondrial matrix from the cytosol, their site of synthesis. Protein export from the matrix into the inner membrane bears similarities to Sec-independent protein export in bacteria and requires the function of the Oxa1 protein. Oxa1 is a component of a general protein insertion site in yeast mitochondrial inner membrane used by both nuclear and mitochondrial DNA encoded proteins. Oxa1 is a member of the conserved Oxa1/YidC/Alb3 protein family found throughout prokaryotes throughout eukaryotes (where it is found in mitochondria and chloroplasts). The evidence to demonstrate that the Oxa1/YidC/Alb3 protein family represents a novel evolutionarily conserved membrane insertion machinery is reviewed here
Thermodynamic competition between membrane protein oligomeric states
Self-assembly of protein monomers into distinct membrane protein oligomers
provides a general mechanism for diversity in the molecular architectures, and
resulting biological functions, of membrane proteins. We develop a general
physical framework describing the thermodynamic competition between different
oligomeric states of membrane proteins. Using the mechanosensitive channel of
large conductance as a model system, we show how the dominant oligomeric states
of membrane proteins emerge from the interplay of protein concentration in the
cell membrane, protein-induced lipid bilayer deformations, and direct
monomer-monomer interactions. Our results suggest general physical mechanisms
and principles underlying regulation of protein function via control of
membrane protein oligomeric state.Comment: 7 pages, 5 figure
A saposin-lipoprotein nanoparticle system for membrane proteins.
A limiting factor in membrane protein research is the ability to solubilize and stabilize such proteins. Detergents are used most often for solubilizing membrane proteins, but they are associated with protein instability and poor compatibility with structural and biophysical studies. Here we present a saposin-lipoprotein nanoparticle system, Salipro, which allows for the reconstitution of membrane proteins in a lipid environment that is stabilized by a scaffold of saposin proteins. We demonstrate the applicability of the method on two purified membrane protein complexes as well as by the direct solubilization and nanoparticle incorporation of a viral membrane protein complex from the virus membrane. Our approach facilitated high-resolution structural studies of the bacterial peptide transporter PeptTSo2 by single-particle cryo-electron microscopy (cryo-EM) and allowed us to stabilize the HIV envelope glycoprotein in a functional state
Prediction of β-barrel membrane proteins by searching for restricted domains
BACKGROUND: The identification of beta-barrel membrane proteins out of a genomic/proteomic background is one of the rapidly developing fields in bioinformatics. Our main goal is the prediction of such proteins in genome/proteome wide analyses.
RESULTS: For the prediction of beta-barrel membrane proteins within prokaryotic proteomes a set of parameters was developed. We have focused on a procedure with a low false positive rate beside a procedure with lowest false prediction rate to obtain a high certainty for the predicted sequences. We demonstrate that the discrimination between beta-barrel membrane proteins and other proteins is improved by analyzing a length limited region. The developed set of parameters is applied to the proteome of E. coli and the results are compared to four other described procedures.
CONCLUSION: Analyzing the beta-barrel membrane proteins revealed the presence of a defined membrane inserted beta-barrel region. This information can now be used to refine other prediction programs as well. So far, all tested programs fail to predict outer membrane proteins in the proteome of the prokaryote E. coli with high reliability. However, the reliability of the prediction is improved significantly by a combinatory approach of several programs. The consequences and usability of the developed scores are discussed
- …