1,603,178 research outputs found
Mathematical models in physiology
Computational modelling of biological processes and systems has witnessed a remarkable development in recent years. The search-term (modelling OR modeling) yields over 58000 entries in PubMed, with more than 34000 since the year 2000: thus, almost two-thirds of papers appeared in the last 5–6 years, compared to only about one-third in the preceding 5–6 decades.\ud
\ud
The development is fuelled both by the continuously improving tools and techniques available for bio-mathematical modelling and by the increasing demand in quantitative assessment of element inter-relations in complex biological systems. This has given rise to a worldwide public domain effort to build a computational framework that provides a comprehensive theoretical representation of integrated biological function—the Physiome.\ud
\ud
The current and next issues of this journal are devoted to a small sub-set of this initiative and address biocomputation and modelling in physiology, illustrating the breadth and depth of experimental data-based model development in biological research from sub-cellular events to whole organ simulations
Mathematical models of avascular cancer
This review will outline a number of illustrative mathematical models describing the growth of avascular tumours. The aim of the review is to provide a relatively comprehensive list of existing models in this area and discuss several representative models in greater detail. In the latter part of the review, some possible future avenues of mathematical modelling of avascular tumour development are outlined together with a list of key questions
Mathematical models of martensitic microstructure
Martensitic microstructures are studied using variational models based on nonlinear elasticity. Some relevant mathematical tools from nonlinear analysis are described, and applications given to austenite-martensite interfaces and related topics
- …