4,161,678 research outputs found
On Relativistic Material Reference Systems
This work closes certain gaps in the literature on material reference systems
in general relativity. It is shown that perfect fluids are a special case of
DeWitt's relativistic elastic media and that the velocity--potential formalism
for perfect fluids can be interpreted as describing a perfect fluid coupled to
a fleet of clocks. A Hamiltonian analysis of the elastic media with clocks is
carried out and the constraints that arise when the system is coupled to
gravity are studied. When the Hamiltonian constraint is resolved with respect
to the clock momentum, the resulting true Hamiltonian is found to be a
functional only of the gravitational variables. The true Hamiltonian is
explicitly displayed when the medium is dust, and is shown to depend on the
detailed construction of the clocks.Comment: 18 pages, ReVTe
Advanced fiber/matrix material systems
Work completed in Phase 1 of the NASA Advanced Composite Technology program is discussed. Two towpreg forms (commingled yarns and fused powder towpregs) are being characterized under the program. These towpregs will be used to evaluate textile fabrication technologies for advanced aircraft composite structures. The unique characteristic of both of these material forms is that both fiber and matrix resin are handled in a single operation such as weaving, braiding, or fiber placement. The evaluation of both commingled and fused powder towpreg is described. Various polymer materials are considered for both subsonic and supersonic applications. Polymers initially being evaluated include thermoplastic polyimides such as Larc-TPI and New-TPI, thermoplastics such as PEEK and PEKEKK as well as some toughened crosslinked polyimides. Preliminary mechanical properties as well as tow handling are evaluated
Material-Specific Investigations of Correlated Electron Systems
We present the results of numerical studies for selected materials with
strongly correlated electrons using a combination of the local-density
approximation and dynamical mean-field theory (DMFT). For the solution of the
DMFT equations a continuous-time quantum Monte-Carlo algorithm was employed.
All simulations were performed on the supercomputer HLRB II at the Leibniz
Rechenzentrum in Munich. Specifically we have analyzed the pressure induced
metal-insulator transitions in Fe2O3 and NiS2, the charge susceptibility of the
fluctuating-valence elemental metal Yb, and the spectral properties of a
covalent band-insulator model which includes local electronic correlations.Comment: 14 pages, 7 figures, to appear in "High Performance Computing in
Science and Engineering, Garching 2009" (Springer
Composite material systems for hydrogen management
The task of managing hydrogen entry into elevated temperature structural materials employed in turbomachinery is a critical engineering area for propulsion systems employing hydrogen or decomposable hydrocarbons as fuel. Extant structural materials, such as the Inconel series, are embrittled by the ingress of hydrogen in service, leading to a loss of endurance and general deterioration of load-bearing dependability. Although the development of hydrogen-insensitive material systems is an obvious engineering option, to date insensitive systems cannot meet the time-temperature-loading service extremes encountered. A short-term approach that is both feasible and technologically sound is the development and employment of hydrogen barrier coatings. The present project is concerned with developing, analyzing, and physically testing laminate composite hydrogen barrier systems, employing Inconel 718 as the structural material to be protected. Barrier systems will include all metallic, metallic-to-ceramic, and, eventually, metallic/ceramic composites as the lamellae. Since space propulsion implies repetitive engine firings without earth-based inspection and repair, coating durability will be closely examined, and testing regimes will include repetitive thermal cycling to simulate damage accumulation. The target accomplishments include: generation of actual hydrogen permeation data for metallic, ceramic-metallic, and hybrid metallic/ceramic composition barrier systems, practically none of which is currently extant; definition of physical damage modes imported to barrier systems due to thermal cycling, both transient temperature profiles and steady-state thermal mismatch stress states being examined as sources of damage; and computational models that incorporate general laminate schemes as described above, including manufacturing realities such as porosity, and whatever defects are introduced through service and characterized during the experimental programs
Scalar Material Reference Systems and Loop Quantum Gravity
In the past, the possibility to employ (scalar) material reference systems in
order to describe classical and quantum gravity directly in terms of gauge
invariant (Dirac) observables has been emphasised frequently. This idea has
been picked up more recently in Loop Quantum Gravity (LQG) with the aim to
perform a reduced phase space quantisation of the theory thus possibly avoiding
problems with the (Dirac) operator constraint quantisation method for
constrained system. In this work, we review the models that have been studied
on the classical and/or the quantum level and parametrise the space of theories
so far considered. We then describe the quantum theory of a model that, to the
best of our knowledge, so far has only been considered classically. This model
could arguably called the optimal one in this class of models considered as it
displays the simplest possible true Hamiltonian while at the same time reducing
all constraints of General Relativity.Comment: 28 pages, some references were correcte
Certified quantum non-demolition measurement of material systems
An extensive debate on quantum non-demolition (QND) measurement, reviewed in
Grangier et al. [Nature, {\bf 396}, 537 (1998)], finds that true QND
measurements must have both non-classical state-preparation capability and
non-classical information-damage tradeoff. Existing figures of merit for these
non-classicality criteria require direct measurement of the signal variable and
are thus difficult to apply to optically-probed material systems. Here we
describe a method to demonstrate both criteria without need for to direct
signal measurements. Using a covariance matrix formalism and a general noise
model, we compute meter observables for QND measurement triples, which suffice
to compute all QND figures of merit. The result will allow certified QND
measurement of atomic spin ensembles using existing techniques.Comment: 11 pages, zero figure
- …