1,580,679 research outputs found

    The scientific evaluation of music content analysis systems: Valid empirical foundations for future real-world impact

    Get PDF
    We discuss the problem of music content analysis within the formal framework of experimental design

    Machine Learning for Software Engineering: Models, Methods, and Applications

    Get PDF
    Machine Learning (ML) is the discipline that studies methods for automatically inferring models from data. Machine learning has been successfully applied in many areas of software engineering ranging from behaviour extraction, to testing, to bug fixing. Many more applications are yet be defined. However, a better understanding of ML methods, their assumptions and guarantees would help software engineers adopt and identify the appropriate methods for their desired applications. We argue that this choice can be guided by the models one seeks to infer. In this technical briefing, we review and reflect on the applications of ML for software engineering organised according to the models they produce and the methods they use. We introduce the principles of ML, give an overview of some key methods, and present examples of areas of software engineering benefiting from ML. We also discuss the open challenges for reaching the full potential of ML for software engineering and how ML can benefit from software engineering methods

    Replica conditional sequential monte carlo

    Get PDF
    © 2019 International Machine Learning Society (IMLS). We propose a Markov chain Monte Carlo (MCMC) scheme to perform state inference in non-linear non-Gaussian state-space models. Current state-of-the-art methods to address this problem rely on particle MCMC techniques and its variants, such as the iterated conditional Sequential Monte Carlo (cSMC) scheme, which uses a Sequential Monte Carlo (SMC) type proposal within MCMC. A deficiency of standard SMC proposals is that they only use observations up to time t to propose states at time t when an entire observation sequence is available. More sophisticated SMC based on lookahead techniques could be used but they can be difficult to put in practice. We propose here replica cSMC where we build SMC proposals for one replica using information from the entire observation sequence by conditioning on the states of the other replicas. This approach is easily parallelizable and we demonstrate its excellent empirical performance when compared to the standard iterated cSMC scheme at fixed computational complexity

    Validating generic metrics of fairness in game-based resource allocation scenarios with crowdsourced annotations

    Get PDF
    Being able to effectively measure the notion of fairness is of vital importance as it can provide insight into the formation and evolution of complex patterns and phenomena, such as social preferences, collaboration, group structures and social conflicts. This paper presents a comparative study for quantitatively modelling the notion of fairness in one-to-many resource allocation scenarios - i.e. one provider agent has to allocate resources to multiple receiver agents. For this purpose, we investigate the efficacy of six metrics and cross-validate them on crowdsourced human ranks of fairness annotated through a computer game implementation of the one-to-many resource allocation scenario. Four of the fairness metrics examined are well-established metrics of data dispersion, namely standard deviation, normalised entropy, the Gini coefficient and the fairness index. The fifth metric, proposed by the authors, is an ad-hoc context-based measure which is based on key aspects of distribution strategies. The sixth metric, finally, is machine learned via ranking support vector machines (SVMs) on the crowdsourced human perceptions of fairness. Results suggest that all ad-hoc designed metrics correlate well with the human notion of fairness, and the context-based metrics we propose appear to have a predictability advantage over the other ad-hoc metrics. On the other hand, the normalised entropy and fairness index metrics appear to be the most expressive and generic for measuring fairness for the scenario adopted in this study and beyond. The SVM model can automatically model fairness more accurately than any ad-hoc metric examined (with an accuracy of 81.86%) but it is limited by its expressivity and generalisability.Being able to effectively measure the notion of fairness is of vital importance as it can provide insight into the formation and evolution of complex patterns and phenomena, such as social preferences, collaboration, group structures and social conflicts. This paper presents a comparative study for quantitatively modelling the notion of fairness in one-to-many resource allocation scenarios - i.e. one provider agent has to allocate resources to multiple receiver agents. For this purpose, we investigate the efficacy of six metrics and cross-validate them on crowdsourced human ranks of fairness annotated through a computer game implementation of the one-to-many resource allocation scenario. Four of the fairness metrics examined are well-established metrics of data dispersion, namely standard deviation, normalised entropy, the Gini coefficient and the fairness index. The fifth metric, proposed by the authors, is an ad-hoc context-based measure which is based on key aspects of distribution strategies. The sixth metric, finally, is machine learned via ranking support vector machines (SVMs) on the crowdsourced human perceptions of fairness. Results suggest that all ad-hoc designed metrics correlate well with the human notion of fairness, and the context-based metrics we propose appear to have a predictability advantage over the other ad-hoc metrics. On the other hand, the normalised entropy and fairness index metrics appear to be the most expressive and generic for measuring fairness for the scenario adopted in this study and beyond. The SVM model can automatically model fairness more accurately than any ad-hoc metric examined (with an accuracy of 81.86%) but it is limited by its expressivity and generalisability.peer-reviewe

    Comparative Profiling

    Get PDF
    Generative AI models are at the forefront of advancing creative and analytical tasks, pushing the boundaries of what machines can generate and comprehend. Among these, latent diffusion models represent significant advancements in generating high-fidelity audio and images. This study introduces a systematic approach to study GPU utilisation during the training of these models by leveraging Weights & Biases and the PyTorch Profiler for detailed monitoring and profiling. Our methodology is designed to uncover inefficiencies in GPU resource allocation, pinpointing bottlenecks in the training pipeline. The insights gained aim to guide the development of strategies for enhancing training efficiency, potentially reducing computational costs and accelerating the development cycle of generative AI models. This contribution not only highlights the critical role of resource optimisation in scaling AI technologies but also opens new avenues for research in efficient model training
    • …
    corecore