10,880 research outputs found
Highly accurate model for prediction of lung nodule malignancy with CT scans
Computed tomography (CT) examinations are commonly used to predict lung
nodule malignancy in patients, which are shown to improve noninvasive early
diagnosis of lung cancer. It remains challenging for computational approaches
to achieve performance comparable to experienced radiologists. Here we present
NoduleX, a systematic approach to predict lung nodule malignancy from CT data,
based on deep learning convolutional neural networks (CNN). For training and
validation, we analyze >1000 lung nodules in images from the LIDC/IDRI cohort.
All nodules were identified and classified by four experienced thoracic
radiologists who participated in the LIDC project. NoduleX achieves high
accuracy for nodule malignancy classification, with an AUC of ~0.99. This is
commensurate with the analysis of the dataset by experienced radiologists. Our
approach, NoduleX, provides an effective framework for highly accurate nodule
malignancy prediction with the model trained on a large patient population. Our
results are replicable with software available at
http://bioinformatics.astate.edu/NoduleX
Lung nodules detection by ensemble classification
A method is presented that achieves lung nodule detection by classification of nodule and non-nodule patterns. It is based on random forests which are ensemble learners that grow classification trees. Each tree produces a classification decision, and an integrated output is calculated. The performance of the developed method is compared against that of the support vector machine and the decision tree methods. Three experiments are performed using lung scans of 32 patients including thousands of images within which nodule locations are marked by expert radiologists. The classification errors and execution times are presented and discussed. The lowest classification error (2.4%) has been produced by the developed method.<br /
Lung nodule diagnosis and cancer histology classification from computed tomography data by convolutional neural networks: A survey
Lung cancer is among the deadliest cancers. Besides lung nodule classification and diagnosis, developing non-invasive systems to classify lung cancer histological types/subtypes may help clinicians to make targeted treatment decisions timely, having a positive impact on patients' comfort and survival rate. As convolutional neural networks have proven to be responsible for the significant improvement of the accuracy in lung cancer diagnosis, with this survey we intend to: show the contribution of convolutional neural networks not only in identifying malignant lung nodules but also in classifying lung cancer histological types/subtypes directly from computed tomography data; point out the strengths and weaknesses of slice-based and scan-based approaches employing convolutional neural networks; and highlight the challenges and prospective solutions to successfully apply convolutional neural networks for such classification tasks. To this aim, we conducted a comprehensive analysis of relevant Scopus-indexed studies involved in lung nodule diagnosis and cancer histology classification up to January 2022, dividing the investigation in convolutional neural network-based approaches fed with planar or volumetric computed tomography data. Despite the application of convolutional neural networks in lung nodule diagnosis and cancer histology classification is a valid strategy, some challenges raised, mainly including the lack of publicly-accessible annotated data, together with the lack of reproducibility and clinical interpretability. We believe that this survey will be helpful for future studies involved in lung nodule diagnosis and cancer histology classification prior to lung biopsy by means of convolutional neural networks
Automatic lung nodule detection from chest CT data using geometrical features: initial results
In this paper, a complete system for automatic lung nodule detection from Chest CT data is proposed. The proposed system includes the methods of lung segmentation and nodule detection from CT data. The algorithm for lung segmentation consists ofsurrounding air voxel removal, body fat/tissue identification, trachea detection, and pulmonary vessels segmentation. The nodule detection algorithm comprises of candidate surface generation, geometrical feature generation and classification. The proposed system shows 88.2% sensitivity for nodule >=3mm with 8.91 false positive per dataset
Lung Nodule Classification by the Combination of Fusion Classifier and Cascaded Convolutional Neural Networks
Lung nodule classification is a class imbalanced problem, as nodules are
found with much lower frequency than non-nodules. In the class imbalanced
problem, conventional classifiers tend to be overwhelmed by the majority class
and ignore the minority class. We showed that cascaded convolutional neural
networks can classify the nodule candidates precisely for a class imbalanced
nodule candidate data set in our previous study. In this paper, we propose
Fusion classifier in conjunction with the cascaded convolutional neural network
models. To fuse the models, nodule probabilities are calculated by using the
convolutional neural network models at first. Then, Fusion classifier is
trained and tested by the nodule probabilities. The proposed method achieved
the sensitivity of 94.4% and 95.9% at 4 and 8 false positives per scan in Free
Receiver Operating Characteristics (FROC) curve analysis, respectively.Comment: Draft of ISBI2018. arXiv admin note: text overlap with
arXiv:1703.0031
- …