1,502,617 research outputs found
Folding Kinetics of Protein Like Heteropolymers
Using a simple three-dimensional lattice copolymer model and Monte Carlo
dynamics, we study the collapse and folding of protein-like heteropolymers. The
polymers are 27 monomers long and consist of two monomer types. Although these
chains are too long for exhaustive enumeration of all conformations, it is
possible to enumerate all the maximally compact conformations, which are 3x3x3
cubes. This allows us to select sequences that have a unique global minimum. We
then explore the kinetics of collapse and folding and examine what features
determine the various rates. The folding time has a plateau over a broad range
of temperatures and diverges at both high and low temperatures. The folding
time depends on sequence and is related to the amount of energetic frustration
in the native state. The collapse times of the chains are sequence independent
and are a few orders of magnitude faster than the folding times, indicating a
two-phase folding process. Below a certain temperature the chains exhibit
glass-like behavior, characterized by a slowing down of time scales and loss of
self-averaging behavior. We explicitly define the glass transition temperature
(Tg), and by comparing it to the folding temperature (Tf), we find two classes
of sequences: good folders with Tf > Tg and non-folders with Tf < Tg.Comment: 23 pages (plus 10 figures included in a seperate file) LaTeX, no
local report nu
Capillarity-like growth of protein folding nuclei
We analyzed folding routes predicted by a variational model in terms of a
generalized formalism of the capillarity scaling theory for 28 two-state
proteins. The scaling exponent ranged from 0.2 to 0.45 with an average of 0.33.
This average value corresponds to packing of rigid objects.That is, on average
the folded core of the nucleus is found to be relatively diffuse. We also
studied the growth of the folding nucleus and interface along the folding route
in terms of the density or packing fraction. The evolution of the folded core
and interface regions can be classified into three patterns of growth depending
on how the growth of the folded core is balanced by changes in density of the
interface. Finally, we quantified the diffuse versus polarized structure of the
critical nucleus through direct calculation of the packing fraction of the
folded core and interface regions. Our results support the general picture of
describing protein folding as the capillarity-like growth of folding nuclei.Comment: 16 pages,6 figures. Submitted to Proc.Natl.Acad.Sc
An Ising-Like model for protein mechanical unfolding
The mechanical unfolding of proteins is investigated by extending the
Wako-Saito-Munoz-Eaton model, a simplified protein model with binary degrees of
freedom, which has proved successful in describing the kinetics of protein
folding. Such a model is generalized by including the effect of an external
force, and its thermodynamics turns out to be exactly solvable. We consider two
molecules, the 27th immunoglobulin domain of titin and protein PIN1. In the
case of titin we determine equilibrium force-extension curves and study
nonequilibrium phenomena in the frameworks of dynamic loading and force clamp
protocols, verifying theoretical laws and finding the position of the kinetic
barrier which hinders the unfolding of the molecule. The PIN1 molecule is used
to check the possibility of computing the free energy landscape as a function
of the molecule length by means of an extended form of the Jarzynski equality.Comment: 4 pages + appendi
Self-assembly of Escherichia coli phage shock protein A
The Phage shock protein (Psp) response is an extracytoplasmic stress response. The central component of this system is PspA, a protein that mediates the physiological response to membrane stress. PspA is also involved in regulating its own transcription and that of the psp operon, forming a positive feedback loop. PspA has been previously shown to oligomerise into higher-order species, including a 36-meric species with ring-like structure. In this study, we demonstrate that the ring-like PspA structures further self-assemble into rod-shaped complexes. These rod-like structures may play a scaffolding role in the maintenance of membrane integrity during phage shock protein response
Mapping of mutation-sensitive sites in protein-like chains
In this work we have studied, with the help of a simple on-lattice model, the
distribution pattern of sites sensitive to point mutations ('hot' sites) in
protein-like chains. It has been found that this pattern depends on the
regularity of the matrix that rules the interaction between different kinds of
residues. If the interaction matrix is dominated by the hydrophobic effect
(Miyazawa Jernigan like matrix), this distribution is very simple - all the
'hot' sites can be found at the positions with maximum number of closest
nearest neighbors (bulk).
If random or nonlinear corrections are added to such an interaction matrix
the distribution pattern changes. The rising of collective effects allows the
'hot' sites to be found in places with smaller number of nearest neighbors
(surface) while the general trend of the 'hot' sites to fall into a bulk part
of a conformation still holds.Comment: 15 pages, 6 figure
Protein chainmail variants in dsDNA viruses.
First discovered in bacteriophage HK97, biological chainmail is a highly stable system formed by concatenated protein rings. Each subunit of the ring contains the HK97-like fold, which is characterized by its submarine-like shape with a 5-stranded β sheet in the axial (A) domain, spine helix in the peripheral (P) domain, and an extended (E) loop. HK97 capsid consists of covalently-linked copies of just one HK97-like fold protein and represents the most effective strategy to form highly stable chainmail needed for dsDNA genome encapsidation. Recently, near-atomic resolution structures enabled by cryo electron microscopy (cryoEM) have revealed a range of other, more complex variants of this strategy for constructing dsDNA viruses. The first strategy, exemplified by P22-like phages, is the attachment of an insertional (I) domain to the core 5-stranded β sheet of the HK97-like fold. The atomic models of the Bordetella phage BPP-1 showcases an alternative topology of the classic HK97 topology of the HK97-like fold, as well as the second strategy for constructing stable capsids, where an auxiliary jellyroll protein dimer serves to cement the non-covalent chainmail formed by capsid protein subunits. The third strategy, found in lambda-like phages, uses auxiliary protein trimers to stabilize the underlying non-covalent chainmail near the 3-fold axis. Herpesviruses represent highly complex viruses that use a combination of these strategies, resulting in four-level hierarchical organization including a non-covalent chainmail formed by the HK97-like fold domain found in the floor region. A thorough understanding of these structures should help unlock the enigma of the emergence and evolution of dsDNA viruses and inform bioengineering efforts based on these viruses
Basic fibroblast growth factor (bFGF) in rodent testis
We have previously described a 30 kDa basic fibroblast growth factor (bFGF)-like protein in rodent testicular homogenates and have shown that pachytene spermatocytes are the sites of predominant immunoreactivity for this bFGF-like protein (Mayerhofer, A., Russell, L.D., Grothe, C., Rudolf, M. and Gratzl, M. (1991) Endocrinology 129, 921–924). We have now addressed the question whether this 30 kDa bFGF-like protein is a large bFGF form and whether it is produced by pachytene spermatocytes. We detected bFGF mRNA in homogenates of isolated mouse spermatocytes (which consisted mainly of pachytene spermatocytes) using S1 nuclease protection assays. As shown by Western blot analyses, the bFGF mRNA in mouse spermatocytes is translated into bFGF of an approximate molecular weight of 30 kDa. Neither bFGF mRNA, nor bFGF itself, was observed in isolated mouse Leydig cells. These results indicate that the immunoreactive bFGF-like protein observed previously in germ cells of the murine testis is identical to bFGF. Thus, germ cells of the testis produce bFGF, which may exert regulatory function in the process of spermatogenesis
Russell-like bodies in plant seeds share common features with prolamin bodies and occur upon recombinant protein production
Although many recombinant proteins have been produced in seeds at high yields without adverse effects on the plant, endoplasmic reticulum (ER) stress and aberrant localization of endogenous or recombinant proteins have also been reported. The production of murine interleukin-10 (mIL-10) in Arabidopsis thaliana seeds resulted in the de novo formation of ER-derived structures containing a large fraction of the recombinant protein in an insoluble form. These bodies containing mIL-10 were morphologically similar to Russell bodies found in mammalian cells. We confirmed that the compartment containing mIL-10 was enclosed by ER membranes, and 3D electron microscopy revealed that these structures have a spheroidal shape. Another feature shared with Russell bodies is the continued viability of the cells that generate these organelles. To investigate similarities in the formation of Russell-like bodies and the plant-specific protein bodies formed by prolamins in cereal seeds, we crossed plants containing ectopic ER-derived prolamin protein bodies with a line accumulating mIL-10 in Russell-like bodies. This resulted in seeds containing only one population of protein bodies in which mIL-10 inclusions formed a central core surrounded by the prolamin-containing matrix, suggesting that both types of protein aggregates are together removed from the secretory pathway by a common mechanism. We propose that, like mammalian cells, plant cells are able to form Russell-like bodies as a self-protection mechanism, when they are overloaded with a partially transport-incompetent protein, and we discuss the resulting challenges for recombinant protein production
Expression of membrane-associated proteins within single emulsion cell facsimiles
MreB is a structural membrane-associated protein which is one of the key components of the bacterial cytoskeleton. Although it plays an important role in shape maintenance of rod-like bacteria, the understanding of its mechanism of action is still not fully understood. This study shows how segmented flow and microdroplet technology can be used as a new tool for biological in vitro investigation of this protein. In this paper, we demonstrate cell-free expression in a single emulsion system to express red fluorescence protein (RFP) and MreB linked RFP (MreB–RFP). We follow the aggregation and localisation of the fusion protein MreB–RFP in this artificial cell-like environment. The expression of MreB–RFP in single emulsion droplets leads to the formation of micrometer-scale protein patches distributed at the water/oil interface
Monodisperse self-assembly in a model with protein-like interactions
We study the self-assembly behaviour of patchy particles with `protein-like'
interactions that can be considered as a minimal model for the assembly of
viral capsids and other shell-like protein complexes. We thoroughly explore the
thermodynamics and dynamics of self assembly as a function of the parameters of
the model and find robust assembly of all target structures considered. Optimal
assembly occurs in the region of parameter space where a free energy barrier
regulates the rate of nucleation, thus preventing the premature exhaustion of
the supply of monomers that can lead to the formation of incomplete shells. The
interactions also need to be specific enough to prevent the assembly of
malformed shells, but whilst maintaining kinetic accessibility. Free-energy
landscapes computed for our model have a funnel-like topography guiding the
system to form the target structure, and show that the torsional component of
the interparticle interactions prevents the formation of disordered aggregates
that would otherwise act as kinetic traps.Comment: 11 pages; 10 figure
- …