426,536 research outputs found

    Latent class analysis variable selection

    Get PDF
    We propose a method for selecting variables in latent class analysis, which is the most common model-based clustering method for discrete data. The method assesses a variable's usefulness for clustering by comparing two models, given the clustering variables already selected. In one model the variable contributes information about cluster allocation beyond that contained in the already selected variables, and in the other model it does not. A headlong search algorithm is used to explore the model space and select clustering variables. In simulated datasets we found that the method selected the correct clustering variables, and also led to improvements in classification performance and in accuracy of the choice of the number of classes. In two real datasets, our method discovered the same group structure with fewer variables. In a dataset from the International HapMap Project consisting of 639 single nucleotide polymorphisms (SNPs) from 210 members of different groups, our method discovered the same group structure with a much smaller number of SNP

    Multimethod latent class analysis

    Get PDF
    Correct and, hence, valid classifications of individuals are of high importance in the social sciences as these classifications are the basis for diagnoses and/or the assignment to a treatment. The via regia to inspect the validity of psychological ratings is the multitrait-multimethod (MTMM) approach. First, a latent variable model for the analysis of rater agreement (latent rater agreement model) will be presented that allows for the analysis of convergent validity between different measurement approaches (e.g., raters). Models of rater agreement are transferred to the level of latent variables. Second, the latent rater agreement model will be extended to a more informative MTMM latent class model. This model allows for estimating (i) the convergence of ratings, (ii) method biases in terms of differential latent distributions of raters and differential associations of categorizations within raters (specific rater bias), and (iii) the distinguishability of categories indicating if categories are satisfyingly distinct from each other. Finally, an empirical application is presented to exemplify the interpretation of the MTMM latent class model

    The Role of Trust in Explaining Food Choice: Combining Choice Experiment and Attribute Best−Worst Scaling

    Get PDF
    This paper presents empirical findings from a combination of two elicitation techniques—discrete choice experiment (DCE) and best–worst scaling (BWS)—to provide information about the role of consumers’ trust in food choice decisions in the case of credence attributes. The analysis was based on a sample of 459 Taiwanese consumers and focuses on red sweet peppers. DCE data were examined using latent class analysis to investigate the importance and the utility different consumer segments attach to the production method, country of origin, and chemical residue testing. The relevance of attitudinal and trust-based items was identified by BWS using a hierarchical Bayesian mixed logit model and was aggregated to five latent components by means of principal component analysis. Applying a multinomial logit model, participants’ latent class membership (obtained from DCE data) was regressed on the identified attitudinal and trust components, as well as demographic information. Results of the DCE latent class analysis for the product attributes show that four segments may be distinguished. Linking the DCE with the attitudinal dimensions reveals that consumers’ attitude and trust significantly explain class membership and therefore, consumers’ preferences for different credence attributes. Based on our results, we derive recommendations for industry and policy

    Latent class analysis for segmenting preferences of investment bonds

    Get PDF
    Market segmentation is a key component of conjoint analysis which addresses consumer preference heterogeneity. Members in a segment are assumed to be homogenous in their views and preferences when worthing an item but distinctly heterogenous to members of other segments. Latent class methodology is one of the several conjoint segmentation procedures that overcome the limitations of aggregate analysis and a-priori segmentation. The main benefit of Latent class models is that market segment membership and regression parameters of each derived segment are estimated simultaneously. The Latent class model presented in this paper uses mixtures of multivariate conditional normal distributions to analyze rating data, where the likelihood is maximized using the EM algorithm. The application focuses on customer preferences for investment bonds described by four attributes; currency, coupon rate, redemption term and price. A number of demographic variables are used to generate segments that are accessible and actionable.peer-reviewe

    The Use of Loglinear Models for Assessing Differential Item Functioning Across Manifest and Latent Examinee Groups

    Get PDF
    Loglinear latent class models are used to detect differential item functioning (DIF). These models are formulated in such a manner that the attribute to be assessed may be continuous, as in a Rasch model, or categorical, as in Latent Class Mastery models. Further, an item may exhibit DIF with respect to a manifest grouping variable, a latent grouping variable, or both. Likelihood-ratio tests for assessing the presence of various types of DIF are described, and these methods are illustrated through the analysis of a "real world" data set

    Insights into Latent Class Analysis

    Get PDF
    Latent class analysis is a popular statistical technique for estimating disease prevalence and test sensitivity and specificity. It is used when a gold standard assessment of disease is not available but results of multiple imperfect tests are. We derive analytic expressions for the parameter estimates in terms of the raw data, under the conditional independence assumption. These expressions indicate explicitly how observed two- and three-way associations between test results are used to infer disease prevalence and test operating characteristics. Although reasonable if the conditional independence model holds, the estimators have no basis when it fails. We therefore caution against using the latent class approach in practice

    A comparison of two-stage segmentation methods for choice-based conjoint data: a simulation study.

    Get PDF
    Due to the increasing interest in market segmentation in modern marketing research, several methods for dealing with consumer heterogeneity and for revealing market segments have been described in the literature. In this study, the authors compare eight two-stage segmentation methods that aim to uncover consumer segments by classifying subject-specific indicator values. Four different indicators are used as a segmentation basis. The forces, which are subject-aggregated gradient values of the likelihood function, and the dfbetas, an outlier detection measure, are two indicators that express a subject’s effect on the estimation of the aggregate partworths in the conditional logit model. Although the conditional logit model is generally estimated at the aggregate level, this research obtains individual-level partworth estimates for segmentation purposes. The respondents’ raw choices are the final indicator values. The authors classify the indicators by means of cluster analysis and latent class models. The goal of the study is to compare the segmentation performance of the methods with respect to their success rate, membership recovery and segment mean parameter recovery. With regard to the individual-level estimates, the authors obtain poor segmentation results both with cluster and latent class analysis. The cluster methods based on the forces, the dfbetas and the choices yield good and similar results. Classification of the forces and the dfbetas deteriorates with the use of latent class analysis, whereas latent class modeling of the choices outperforms its cluster counterpart.Two-stage segmentation methods; Choice-based conjoint analysis; Conditional logit model; Market segmentation; Latent class analysis;

    Latent class analysis was accurate but sensitive in data simulations

    Get PDF
    Objectives: Latent class methods are increasingly being used in analysis of developmental trajectories. A recent simulation study by Twisk and Hoekstra (2012) suggested caution in use of these methods because they failed to accurately identify developmental patterns that had been artificially imposed on a real data set. This article tests whether existing developmental patterns within the data set used might have obscured the imposed patterns.<p></p> Study Design and Setting: Data were simulated to match the latent class pattern in the previous article, but with varying levels of randomly generated variance, rather than variance carried over from a real data set. Latent class analysis (LCA) was then used to see if the latent class structure could be accurately identified.<p></p> Results: LCA performed very well at identifying the simulated latent class structure, even when the level of variance was similar to that reported in the previous study, although misclassification began to be more problematic with considerably higher levels of variance.<p></p> Conclusion: The failure of LCA to replicate the imposed patterns in the previous study may have been because it was sensitive enough to detect residual patterns of population heterogeneity within the altered data. LCA performs well at classifying developmental trajectories.<p></p&gt
    • …
    corecore