408,142 research outputs found
A laboratory study on cold-mix, cold-lay emulsion mixtures
This paper describes laboratory experiments and presents
results for the performances of cold-mix, cold-lay
emulsion mixtures. The main objective of the experiments
was to evaluate and improve the properties of the cold
mixtures. The mixture properties evaluated were:
volumetric properties, indirect tensile stiffness modulus
(ITSM), repeated load axial creep and fatigue. These
properties were compared with conventional hot asphalt
mixtures not containing any waste/recycled materials. To
optimise the performances of the mixtures, a target of
ITSM value of 2000 MPa was selected. At full curing
conditions, the stiffness of the cold mixes was found to be
very similar to that of hot mixtures of the same
penetration grade base bitumen (100 pen). Test results
also show that the addition of 1–2% cement significantly
improved the mechanical performance of the mixes and
significantly accelerated their strength gain. The fatigue
behaviour of the cold mixes that incorporated cement was
comparable with that of the hot mixtures
Materials and Mix Optimization Procedures for PCC Pavements;TR-484, March 2006
Severe environmental conditions, coupled with the routine use of deicing chemicals and increasing traffic volume, tend to place extreme demands on portland cement concrete (PCC) pavements. In most instances, engineers have been able to specify and build PCC
pavements that met these challenges. However, there have also been reports of premature deterioration that could not be specifically attributed to a single cause. Modern concrete mixtures have evolved to become very complex chemical systems. The complexity can be attributed to both the number of ingredients used in any given mixture and the various types and sources of the ingredients supplied to any given project. Local environmental conditions can also influence the outcome of paving projects.
This research project investigated important variables that impact the homogeneity and rheology of concrete mixtures. The project consisted of a field study and a laboratory study. The field study collected information from six different projects in Iowa. The
information that was collected during the field study documented cementitious material properties, plastic concrete properties, and hardened concrete properties. The laboratory study was used to develop baseline mixture variability information for the field study. It
also investigated plastic concrete properties using various new devices to evaluate rheology and mixing efficiency. In addition, the lab study evaluated a strategy for the optimization of mortar and concrete mixtures containing supplementary cementitious materials. The results of the field studies indicated that the quality management concrete (QMC) mixtures being placed in the state generally exhibited good uniformity and good to excellent workability. Hardened concrete properties (compressive strength and hardened air content) were also satisfactory. The uniformity of the raw cementitious materials that were used on the projects could not be monitored as closely as was desired by the investigators; however, the information that was gathered indicated that the bulk chemical composition of most materials streams was reasonably uniform. Specific minerals phases in the cementitious materials were less uniform than the bulk chemical composition. The results of the laboratory study indicated that ternary mixtures show significant promise for improving the performance of concrete mixtures. The lab study also verified the results from prior projects that have indicated that bassanite is
typically the major sulfate phase that is present in Iowa cements. This causes the cements to exhibit premature stiffening problems (false set) in laboratory testing. Fly ash helps to reduce the impact of premature stiffening because it behaves like a low-range water reducer in most instances. The premature stiffening problem can also be alleviated by increasing the water–cement ratio of the mixture and providing a remix cycle for the mixture
Investigating Fatigue Performance on the Foamed Asphalt Specimens Generated Using Different Foam Properties
An evaluation of fatigue resistance for foamed asphalt mixture is very demanding since the binder is not continuously distributed on the aggregate surface and this mixtures contains water, the content of which dramatically affects the mechanical properties. This paper discusses the results of laboratory fatigue testingon the foamed asphalt mixtures in which the specimens are generated using three different foamed bitumen properties. Foamed bitumen as the binder was produced at three different foaming water content (FWC) at a temperature of 180oC using a 70/100 pen. The aggregates were mechanically mixed with foamed bitumen using a Hobart mixer. The resulting mixtures were then compacted using a gyratory compactor to generatespecimen with diameter of 100 mm. The specimens were fatigue tested at various stress levels at a temperature of 20oC following a curing period of 3 days at 40oC. Overall, fatigue performance of foamed asphalt can be identified based upon both stress and strain for mixtures produced at FWC 1%, 5%, and 10%
Investigating Fatigue Performance on the Foamed Asphalt Specimens Generated Using Different Foam Properties
An evaluation of fatigue resistance for foamed asphalt mixture is very demanding since the binder is not continuously distributed on the aggregate surface and this mixtures contains water, the content of which dramatically affects the mechanical properties. This paper discusses the results of laboratory fatigue testingon the foamed asphalt mixtures in which the specimens are generated using three different foamed bitumen properties. Foamed bitumen as the binder was produced at three different foaming water content (FWC) at a temperature of 180oC using a 70/100 pen. The aggregates were mechanically mixed with foamed bitumen using a Hobart mixer. The resulting mixtures were then compacted using a gyratory compactor to generatespecimen with diameter of 100 mm. The specimens were fatigue tested at various stress levels at a temperature of 20oC following a curing period of 3 days at 40oC. Overall, fatigue performance of foamed asphalt can be identified based upon both stress and strain for mixtures produced at FWC 1%, 5%, and 10%
Laboratory measurements of radiance and reflectance spectra of dilute primary-treated sewage sludge
The feasibility of remotely monitoring ocean dumping of waste products such as acid and sewage sludge is evaluated. The laboratory arrangement, solar simulator, and test results from three experiments conducted in the laboratory are described. Radiance and reflectance spectra are presented for primary-treated sewage sludge mixed with two types of base water. Results indicate that upwelled reflectance varies in a near-linear manner with concentration and that the sludge has a practically flat signal response between 420 and 970 nm. Well-defined upwelled reflectance spectra were obtained for the sewage-sludge mixtures at all wavelengths and concentrations. The spectral-reflectance values appeared to be influenced by the type of base water, but this influence was small, especially for the mixtures with low concentrations of sewage sludge
The mechanism of formation of microporous or skinned membranes produced by immersion precipitation
Cellulose acetate and polysulfone casting solutions were coagulated in water/solvent mixtures with differing solvent content. Precipitation in pure water yielded skinned membranes. Precipitation in water/solvent mixtures with solvent concentration exceeding a certain minimum value (which is different for different systems) resulted in microporous membranes. This phenomenon has been explained in terms of the model description for the formation of asymmetric membranes as adopted in our laboratory. In this model, the skin formation is related to gelation and the formation of the porous substructure to liquid—liquid phase separation.\ud
\ud
It is made plausible that the addition of solvent to the coagulation bath favours non-solvent inflow and hence liquid—liquid demixing in the precipitating film
Testing the impact of waste from anaerobic digestion (enriched with an organic component on the quality of agricultural land)
Waste from anaerobic digestion is considered as a mineral fertilizer and it is usually applied to agricultural land. The aim of our attempt was to enrich this waste from anaerobic digestion (digestate) with an organic component (in our case represented by haylage). For this purpose, we made different mixtures of digestate and haylage in different weight ratios. In the field trial, the effect of these mixtures on the soil, under standard agricultural conditions, was monitored. Selected accessible nutrients (P, K, Mg, Mn, Ca) and the amount of carbon and nitrogen in the soil were monitored. The results of the laboratory tests confirmed that the areas where the sowing and digestate mixtures were applied showed greater amounts of macro- and micronutrients in plant-accessible forms than the surface fertilized only with digestate or areas fertilized only with standard fertilizers
Effects of CO2 on H2O band profiles and band strengths in mixed H2O:CO2 ices
H2O is the most abundant component of astrophysical ices. In most lines of
sight it is not possible to fit both the H2O 3 um stretching, the 6 um bending
and the 13 um libration band intensities with a single pure H2O spectrum.
Recent Spitzer observations have revealed CO2 ice in high abundances and it has
been suggested that CO2 mixed into H2O ice can affect relative strengths of the
3 um and 6 um bands. We used laboratory infrared transmission spectroscopy of
H2O:CO2 ice mixtures to investigate the effects of CO2 on H2O ice spectral
features at 15-135 K. We find that the H2O peak profiles and band strengths are
significantly different in H2O:CO2 ice mixtures compared to pure H2O ice. In
all H2O:CO2 mixtures, a strong free-OH stretching band appears around 2.73 um,
which can be used to put an upper limit on the CO2 concentration in the H2O
ice. The H2O bending mode profile also changes drastically with CO2
concentration; the broad pure H2O band gives way to two narrow bands as the CO2
concentration is increased. This makes it crucial to constrain the environment
of H2O ice to enable correct assignments of other species contributing to the
interstellar 6 um absorption band. The amount of CO2 present in the H2O ice of
B5:IRS1 is estimated by simultaneously comparing the H2O stretching and bending
regions and the CO2 bending mode to laboratory spectra of H2O, CO2, H2O:CO2 and
HCOOH.Comment: 12 pages, 11 figures, accepted by A&
Cracking in asphalt materials
This chapter provides a comprehensive review of both laboratory characterization and modelling of bulk material fracture in asphalt mixtures. For the purpose of organization, this chapter is divided into a section on laboratory tests and a section on models. The laboratory characterization section is further subdivided on the basis of predominant loading conditions (monotonic vs. cyclic). The section on constitutive models is subdivided into two sections, the first one containing fracture mechanics based models for crack initiation and propagation that do not include material degradation due to cyclic loading conditions. The second section discusses phenomenological models that have been developed for crack growth through the use of dissipated energy and damage accumulation concepts. These latter models have the capability to simulate degradation of material capacity upon exceeding a threshold number of loading cycles.Peer ReviewedPostprint (author's final draft
- …