175,802 research outputs found
Metabolomic analysis of human oral cancer cells with adenylate kinase 2 or phosphorylate glycerol kinase 1 inhibition.
The purpose of this study was to use liquid chromatography-mass spectrometry (LC-MS) with XCMS for a quantitative metabolomic analysis of UM1 and UM2 oral cancer cells after knockdown of metabolic enzyme adenylate kinase 2 (AK2) or phosphorylate glycerol kinase 1 (PGK1). UM1 and UM2 cells were initially transfected with AK2 siRNA, PGK1 siRNA or scrambled control siRNA, and then analyzed with LC-MS for metabolic profiles. XCMS analysis of the untargeted metabolomics data revealed a total of 3200-4700 metabolite features from the transfected UM1 or UM2 cancer cells and 369-585 significantly changed metabolites due to AK2 or PGK1 suppression. In addition, cluster analysis showed that a common group of metabolites were altered by AK2 knockdown or by PGK1 knockdown between the UM1 and UM2 cells. However, the set of significantly changed metabolites due to AK2 knockdown was found to be distinct from those significantly changed by PGK1 knockdown. Our study has demonstrated that LC-MS with XCMS is an efficient tool for metabolomic analysis of oral cancer cells, and knockdown of different genes results in distinct changes in metabolic phenotypes in oral cancer cells
Impaired osteoblast differentiation in annexin A2- and -A5-deficient cells.
Annexins are a class of calcium-binding proteins with diverse functions in the regulation of lipid rafts, inflammation, fibrinolysis, transcriptional programming and ion transport. Within bone, they are well-characterized as components of mineralizing matrix vesicles, although little else is known as to their function during osteogenesis. We employed shRNA to generate annexin A2 (AnxA2)- or annexin A5 (AnxA5)-knockdown pre-osteoblasts, and determined whether proliferation or osteogenic differentiation was altered in knockdown cells, compared to pSiren (Si) controls. We report that DNA content, a marker of proliferation, was significantly reduced in both AnxA2 and AnxA5 knockdown cells. Alkaline phosphatase expression and activity were also suppressed in AnxA2- or AnxA5-knockdown after 14 days of culture. The pattern of osteogenic gene expression was altered in knockdown cells, with Col1a1 expressed more rapidly in knock-down cells, compared to pSiren. In contrast, Runx2, Ibsp, and Bglap all revealed decreased expression after 14 days of culture. In both AnxA2- and AnxA5-knockdown, interleukin-induced STAT6 signaling was markedly attenuated compared to pSiren controls. These data suggest that AnxA2 and AnxA5 can influence bone formation via regulation of osteoprogenitor proliferation, differentiation, and responsiveness to cytokines in addition to their well-studied function in matrix vesicles
Recommended from our members
Robust and stable transcriptional repression in Giardia using CRISPRi.
Giardia lamblia is a binucleate protistan parasite causing significant diarrheal disease worldwide. An inability to target Cas9 to both nuclei, combined with the lack of nonhomologous end joining and markers for positive selection, has stalled the adaptation of CRISPR/Cas9-mediated genetic tools for this widespread parasite. CRISPR interference (CRISPRi) is a modification of the CRISPR/Cas9 system that directs catalytically inactive Cas9 (dCas9) to target loci for stable transcriptional repression. Using a Giardia nuclear localization signal to target dCas9 to both nuclei, we developed efficient and stable CRISPRi-mediated transcriptional repression of exogenous and endogenous genes in Giardia. Specifically, CRISPRi knockdown of kinesin-2a and kinesin-13 causes severe flagellar length defects that mirror defects with morpholino knockdown. Knockdown of the ventral disk MBP protein also causes severe structural defects that are highly prevalent and persist in the population more than 5 d longer than defects associated with transient morpholino-based knockdown. By expressing two guide RNAs in tandem to simultaneously knock down kinesin-13 and MBP, we created a stable dual knockdown strain with both flagellar length and disk defects. The efficiency and simplicity of CRISPRi in polyploid Giardia allows rapid evaluation of knockdown phenotypes and highlights the utility of CRISPRi for emerging model systems
KMT2A promotes melanoma cell growth by targeting hTERT signaling pathway.
Melanoma is an aggressive cutaneous malignancy, illuminating the exact mechanisms and finding novel therapeutic targets are urgently needed. In this study, we identified KMT2A as a potential target, which promoted the growth of human melanoma cells. KMT2A knockdown significantly inhibited cell viability and cell migration and induced apoptosis, whereas KMT2A overexpression effectively promoted cell proliferation in various melanoma cell lines. Further study showed that KMT2A regulated melanoma cell growth by targeting the hTERT-dependent signal pathway. Knockdown of KMT2A markedly inhibited the promoter activity and expression of hTERT, and hTERT overexpression rescued the viability inhibition caused by KMT2A knockdown. Moreover, KMT2A knockdown suppressed tumorsphere formation and the expression of cancer stem cell markers, which was also reversed by hTERT overexpression. In addition, the results from a xenograft mouse model confirmed that KMT2A promoted melanoma growth via hTERT signaling. Finally, analyses of clinical samples demonstrated that the expression of KMT2A and hTERT were positively correlated in melanoma tumor tissues, and KMT2A high expression predicted poor prognosis in melanoma patients. Collectively, our results indicate that KMT2A promotes melanoma growth by activating the hTERT signaling, suggesting that the KMT2A/hTERT signaling pathway may be a potential therapeutic target for melanoma
Persistence of RNAi-Mediated Knockdown in Drosophila Complicates Mosaic Analysis Yet Enables Highly Sensitive Lineage Tracing.
RNA interference (RNAi) has emerged as a powerful way of reducing gene function in Drosophila melanogaster tissues. By expressing synthetic short hairpin RNAs (shRNAs) using the Gal4/UAS system, knockdown is efficiently achieved in specific tissues or in clones of marked cells. Here we show that knockdown by shRNAs is so potent and persistent that even transient exposure of cells to shRNAs can reduce gene function in their descendants. When using the FLP-out Gal4 method, in some instances we observed unmarked "shadow RNAi" clones adjacent to Gal4-expressing clones, which may have resulted from brief Gal4 expression following recombination but prior to cell division. Similarly, Gal4 driver lines with dynamic expression patterns can generate shadow RNAi cells after their activity has ceased in those cells. Importantly, these effects can lead to erroneous conclusions regarding the cell autonomy of knockdown phenotypes. We have investigated the basis of this phenomenon and suggested experimental designs for eliminating ambiguities in interpretation. We have also exploited the persistence of shRNA-mediated knockdown to design a sensitive lineage-tracing method, i-TRACE, which is capable of detecting even low levels of past reporter expression. Using i-TRACE, we demonstrate transient infidelities in the expression of some cell-identity markers near compartment boundaries in the wing imaginal disc
Characterization of a set of abdominal neuroendocrine cells that regulate stress physiology using colocalized diuretic peptides in Drosophila
Multiple neuropeptides are known to regulate water and ion balance in Drosophila melanogaster. Several of these peptides also have other functions in physiology and behavior. Examples are corticotropin-releasing factor-like diuretic hormone (diuretic hormone 44; DH44) and leucokinin (LK), both of which induce fluid secretion by Malpighian tubules (MTs), but also regulate stress responses, feeding, circadian activity and other behaviors. Here, we investigated the functional relations between the LK and DH44 signaling systems. DH44 and LK peptides are only colocalized in a set of abdominal neurosecretory cells (ABLKs). Targeted knockdown of each of these peptides in ABLKs leads to increased resistance to desiccation, starvation and ionic stress. Food ingestion is diminished by knockdown of DH44, but not LK, and water retention is increased by LK knockdown only. Thus, the two colocalized peptides display similar systemic actions, but differ with respect to regulation of feeding and body water retention. We also demonstrated that DH44 and LK have additive effects on fluid secretion by MTs. It is likely that the colocalized peptides are coreleased from ABLKs into the circulation and act on the tubules where they target different cell types and signaling systems to regulate diuresis and stress tolerance. Additional targets seem to be specific for each of the two peptides and subserve regulation of feeding and water retention. Our data suggest that the ABLKs and hormonal actions are sufficient for many of the known DH44 and LK functions, and that the remaining neurons in the CNS play other functional roles
Identification of Multiple Functional Receptors for Tyramine on an Insect Secretory Epithelium
The biogenic amine tyramine (TA) regulates many aspects of invertebrate physiology and development. Although three TA receptor subtypes have been identified (TAR1-3), specific receptors have not been linked to physiological responses in native tissue. In the Malpighian (renal) tubule of Drosophila melanogaster, TA activates a transepithelial chloride conductance, resulting in diuresis and depolarization of the transepithelial potential. In the current work, mutation or RNAi-mediated knockdown in the stellate cells of the tubule of TAR2 (tyrR, CG7431) resulted in a dramatic reduction, but not elimination, of the TA-mediated depolarization. Mutation or knockdown of TAR3 (tyrRII, CG16766) had no effect. However, deletion of both genes, or knockdown of TAR3 on a TAR2 mutant background, eliminated the TA responses. Thus while TAR2 is responsible for the majority of the TA sensitivity of the tubule, TAR3 also contributes to the response. Knockdown or mutation of TAR2 also eliminated the response of tubules to the related amine octopamine (OA), indicating that OA can activate TAR2. This finding contrasts to reports that heterologously expressed TAR2 is highly selective for TA over OA. This is the first report of TA receptor function in a native tissue and indicates unexpected complexity in the physiology of the Malpighian tubule
m6A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade
Melanoma is one of the most deadly and therapy-resistant cancers. Here we show that N6-methyladenosine (m6A) mRNA demethylation by fat mass and obesity-associated protein (FTO) increases melanoma growth and decreases response to anti-PD-1 blockade immunotherapy. FTO level is increased in human melanoma and enhances melanoma tumorigenesis in mice. FTO is induced by metabolic starvation stress through the autophagy and NF-κB pathway. Knockdown of FTO increases m6A methylation in the critical protumorigenic melanoma cell-intrinsic genes including PD-1 (PDCD1), CXCR4, and SOX10, leading to increased RNA decay through the m6A reader YTHDF2. Knockdown of FTO sensitizes melanoma cells to interferon gamma (IFNγ) and sensitizes melanoma to anti-PD-1 treatment in mice, depending on adaptive immunity. Our findings demonstrate a crucial role of FTO as an m6A demethylase in promoting melanoma tumorigenesis and anti-PD-1 resistance, and suggest that the combination of FTO inhibition with anti-PD-1 blockade may reduce the resistance to immunotherapy in melanoma. © 2019, The Author(s)
- …