168,157 research outputs found
The Mr 28,000 gap junction proteins from rat heart and liver are different but related
The sequence of the amino-terminal 32 residues of the rat heart Mr 28,000 gap junction protein presented here allows, for the first time, a sequence comparison of gap junctional proteins from different tissues (heart and liver). Comparison of the rat heart gap junction protein sequence and that available from rat liver reveals 43% sequence identity and conservative changes at an additional 25% of the positions. Both proteins exhibit a hydrophobic domain which could represent a transmembrane span of the junction. This result unequivocally demonstrates the existence of at least two forms of the gap junction protein. As yet, no homology is evident between the gap junctional proteins of either heart or liver and main intrinsic protein from rat eye lens
Mtss1 promotes cell-cell junction assembly and stability through the small GTPase Rac1
Cell-cell junctions are an integral part of epithelia and are often disrupted in cancer cells during epithelial-to-mesenchymal transition (EMT), which is a main driver of metastatic spread. We show here that Metastasis suppressor-1 (Mtss1; Missing in Metastasis, MIM), a member of the IMD-family of proteins, inhibits cell-cell junction disassembly in wound healing or HGF-induced scatter assays by enhancing cell-cell junction strength. Mtss1 not only makes cells more resistant to cell-cell junction disassembly, but also accelerates the kinetics of adherens junction assembly. Mtss1 drives enhanced junction formation specifically by elevating Rac-GTP. Lastly, we show that Mtss1 depletion reduces recruitment of F-actin at cell-cell junctions. We thus propose that Mtss1 promotes Rac1 activation and actin recruitment driving junction maintenance. We suggest that the observed loss of Mtss1 in cancers may compromise junction stability and thus promote EMT and metastasis
Identification of MarvelD3 as a tight junction-associated transmembrane protein of the occludin family
Background: Tight junctions are an intercellular adhesion complex of epithelial and endothelial cells, and form a paracellular barrier that restricts the diffusion of solutes on the basis of size and charge. Tight junctions are formed by multiprotein complexes containing cytosolic and transmembrane proteins. How these components work together to form functional tight junctions is still not well understood and will require a complete understanding of the molecular composition of the junction.
Results: Here we identify a new transmembrane component of tight junctions: MarvelD3, a four-span transmembrane protein. Its predicted transmembrane helices form a Marvel (MAL and related proteins for vesicle traffic and membrane link) domain, a structural motif originally discovered in proteins involved in membrane apposition and fusion events, such as the tight junction proteins occludin and tricellulin. In mammals, MarvelD3 is expressed as two alternatively spliced isoforms. Both isoforms exhibit a broad tissue distribution and are expressed by different types of epithelial as well as endothelial cells. MarvelD3 co-localises with occludin at tight junctions in intestinal and corneal epithelial cells. RNA interference experiments in Caco-2 cells indicate that normal MarvelD3 expression is not required for the formation of functional tight junctions but depletion results in monolayers with increased transepithelial electrical resistance.
Conclusions: Our data indicate that MarvelD3 is a third member of the tight junction-associated occludin family of transmembrane proteins. Similar to occludin, normal expression of MarvelD3 is not essential for the formation of functional tight junctions. However, MarvelD3 functions as a determinant of epithelial paracellular permeability properties
Tilivalline- and Tilimycin-Independent Effects of Klebsiella oxytoca on Tight Junction-Mediated Intestinal Barrier Impairment
Klebsiella oxytoca causes antibiotic-associated hemorrhagic colitis and diarrhea. This was attributed largely to its secreted cytotoxins tilivalline and tilimycin, inductors of epithelial apoptosis. To study whether Klebsiella oxytoca exerts further barrier effects, T84 monolayers were challenged with bacterial supernatants derived from tilivalline/tilimycin-producing AHC6 or its isogeneic tilivalline/tilimycin-deficient strain Mut-89. Both preparations decreased transepithelial resistance, enhanced fluorescein and FITC-dextran-4kDa permeabilities, and reduced expression of barrier-forming tight junction proteins claudin-5 and -8. Laser scanning microscopy indicated redistribution of both claudins off the tight junction region in T84 monolayers as well as in colon crypts of mice infected with AHC6 or Mut-89, indicating that these effects are tilivalline/tilimycin-independent. Furthermore, claudin-1 was affected, but only in a tilivalline/tilimycin-dependent manner. In conclusion, Klebsiella oxytoca induced intestinal barrier impairment by two mechanisms: the tilivalline/tilimycin-dependent one, acting by increasing cellular apoptosis and a tilivalline/tilimycin-independent one, acting by weakening the paracellular pathway through the tight junction proteins claudin-5 and -8
Possible Role of Gap Junction Channels and Non-Junctional Channels in the Infection Caused by <em>Trypanosoma cruzi</em>
Chagas disease affects low-income nations with health consequences that impact the economy of those countries. Interestingly, inhibitors of channels formed by proteins of the gap junction family, such as suramin and boldine, exhibit trypanocidal activity. Gap junction proteins are integral membrane proteins present in both vertebrates and invertebrates that participate in cellular communication. These proteins form gap junction channels, which connect the cytoplasm of neighboring cells or non-junctional channels that connect the intra- and extracellular milieu. Interestingly, Trypanosoma cruzi modulates the expression of proteins of the gap junction family or modify the activity of the channels formed by these proteins in host cells. Moreover, Lucifer yellow microinjected into fibroblast was incorporated into associated trypanosomes of Trypanosoma musculi, suggesting the possibility of direct communication via gap junction channels between them. In this chapter, we summarized the current knowledge about the possible roles of gap junction family proteins in Chagas disease
Structural features of tight-junction proteins
Tight junctions are complex supramolecular entities composed of integral membrane proteins, membrane-associated and soluble cytoplasmic proteins engaging in an intricate and dynamic system of protein-protein interactions. Three-dimensional structures of several tight-junction proteins or their isolated domains have been determined by X-ray crystallography, nuclear magnetic resonance spectroscopy, and cryo-electron microscopy. These structures provide direct insight into molecular interactions that contribute to the formation, integrity, or function of tight junctions. In addition, the known experimental structures have allowed the modeling of ligand-binding events involving tight-junction proteins. Here, we review the published structures of tight-junction proteins. We show that these proteins are composed of a limited set of structural motifs and highlight common types of interactions between tight-junction proteins and their ligands involving these motifs
BLM and RMI1 alleviate RPA inhibition of topoIIIα decatenase activity
RPA is a single-stranded DNA binding protein that physically associates with the BLM complex. RPA stimulates BLM helicase activity as well as the double Holliday junction dissolution activity of the BLM-topoisomerase IIIα complex. We investigated the effect of RPA on the ssDNA decatenase activity of topoisomerase IIIα. We found that RPA and other ssDNA binding proteins inhibit decatenation by topoisomerase IIIα. Complex formation between BLM, TopoIIIα, and RMI1 ablates inhibition of decatenation by ssDNA binding proteins. Together, these data indicate that inhibition by RPA does not involve species-specific interactions between RPA and BLM-TopoIIIα-RMI1, which contrasts with RPA modulation of double Holliday junction dissolution. We propose that topoisomerase IIIα and RPA compete to bind to single-stranded regions of catenanes. Interactions with BLM and RMI1 enhance toposiomerase IIIα activity, promoting decatenation in the presence of RPA
Expanding the Junction: New Insights into Non-Occluding Roles for Septate Junction Proteins during Development
The septate junction (SJ) provides an occluding function for epithelial tissues in invertebrate organisms. This ability to seal the paracellular route between cells allows internal tissues to create unique compartments for organ function and endows the epidermis with a barrier function to restrict the passage of pathogens. Over the past twenty-five years, numerous investigators have identified more than 30 proteins that are required for the formation or maintenance of the SJs in Drosophila melanogaster, and have determined many of the steps involved in the biogenesis of the junction. Along the way, it has become clear that SJ proteins are also required for a number of developmental events that occur throughout the life of the organism. Many of these developmental events occur prior to the formation of the occluding junction, suggesting that SJ proteins possess non-occluding functions. In this review, we will describe the composition of SJs, taking note of which proteins are core components of the junction versus resident or accessory proteins, and the steps involved in the biogenesis of the junction. We will then elaborate on the functions that core SJ proteins likely play outside of their role in forming the occluding junction and describe studies that provide some cell biological perspectives that are beginning to provide mechanistic understanding of how these proteins function in developmental contexts
Connexins: synthesis, post-translational modifications, and trafficking in health and disease
Connexins are tetraspan transmembrane proteins that form gap junctions and facilitate direct intercellular communication, a critical feature for the development, function, and homeostasis of tissues and organs. In addition, a growing number of gap junction-independent functions are being ascribed to these proteins. The connexin gene family is under extensive regulation at the transcriptional and post-transcriptional level, and undergoes numerous modifications at the protein level, including phosphorylation, which ultimately affects their trafficking, stability, and function. Here, we summarize these key regulatory events, with emphasis on how these affect connexin multifunctionality in health and disease
A synaptic nidogen: developmental regulation and role of nidogen-2 at the neuromuscular junction
Background: The skeletal neuromuscular junction is a useful model for elucidating mechanisms that regulate synaptogenesis. Developmentally important intercellular interactions at the neuromuscular junction are mediated by the synaptic portion of a basal lamina that completely ensheaths each muscle fiber. Basal laminas in general are composed of four main types of glycosylated proteins: laminins, collagens IV, heparan sulfate proteoglycans and nidogens (entactins). The portion of the muscle fiber basal lamina that passes between the motor nerve terminal and postsynaptic membrane has been shown to bear distinct isoforms of the first three of these. For laminins and collagens IV, the proteins are deposited by the muscle; a synaptic proteoglycan, z-agrin, is deposited by the nerve. In each case, the synaptic isoform plays key roles in organizing the neuromuscular junction. Here, we analyze the fourth family, composed of nidogen-1 and -2.Results: In adult muscle, nidogen-1 is present throughout muscle fiber basal lamina, while nidogen- 2 is concentrated at synapses. Nidogen-2 is initially present throughout muscle basal lamina, but is lost from extrasynaptic regions during the first three postnatal weeks. Neuromuscular junctions in mutant mice lacking nidogen-2 appear normal at birth, but become topologically abnormal as they mature. Synaptic laminins, collagens IV and heparan sulfate proteoglycans persist in the absence of nidogen-2, suggesting the phenotype is not secondary to a general defect in the integrity of synaptic basal lamina. Further genetic studies suggest that synaptic localization of each of the four families of synaptic basal lamina components is independent of the other three.Conclusion: All four core components of the basal lamina have synaptically enriched isoforms. Together, they form a highly specialized synaptic cleft material. Individually, they play distinct roles in the formation, maturation and maintenance of the neuromuscular junction
- …