4 research outputs found

    Chiral analysis by NMR spectroscopy

    Get PDF
    The analysis of the enantiomeric purity of chiral carboxylic acids requires a reagent to give acceptable NMR chemical shift non-equivalence with a wide range of substrate acids. Extensive studies of the behaviour of N-mono- methyl, N,N-dimethyl and cyclic amines as chiral solvating agents led to the finding that 1,2 diphenyl-1,2-diaminoethane can induce substantial non- equivalence in the diastereomeric salts of chiral a-phenyl and a-halo carboxylic acids. The diastereoisomeric complexes of the diamine with primary carboxylic acids (RCH(_2)CO(_2)H) presents an unusual case in which the internally enantiotopic methylene protons are rendered internally diasteretopic by an external non-covalently bonded reagent. Investigations of the physical parameters determining non-equivalence (stoichiometry, concentration, temperature and substrate enantiomeric purity), combined with NOE observations of the diastereomeric pairs and the crystal structure of the mono- hydrobromide salt were used to suggest the structure for the conformation responsible for shift non-equivalence. The zero valent platinum complex, 3-0-isopropylidene-2,3-dihydroxy-1,4- bis(diphenyl-phosphino)butane-platinum(0)-ethene (DlOP-Pt-ethene) was shown to be a versatile chiral derivatising agent for electron poor and strained η(^2)-donors. This was demonstrated by the enantiomeric purity determinations for alkynes, enones and norbornene derivatives. The crystal structure of DIOP-Pt-ethene was determined and found to be similar to the palladium analogue. If the achiral rhodium complex rhodium(I)-acetylacetone-diethene undergoes a reaction with 2 equivalents of a suitable chiral η(^2)-donor, it will result in the formation of 4 stereoisomers, two meso forms and a pair of enantiomers. The diasteroisomers should display chemical shift non-equivalence in the NMR spectrum of the product, reflecting the enantiomeric purity of the η(^2)-donor (self recognition). The derivatisation of rhodium(l)-acetylacetone-diethene with chiral η(^2)-donors was attempted

    Zeolite- and MgO-Supported Molecular Iridium Complexes: Support and Ligand Effects in Catalysis of Ethene Hydrogenation and H-D Exchange in the Conversion of H2 + D2

    Full text link
    [EN] Zeolite- and MgO-supported mononuclear iridium diethene complexes were formed by the reaction of Ir(C2H4)2(acac) (acac = acetylacetonate, C5H7O2¿) with each support. Changes in the ligand environment of the supported iridium complexes were characterized by infrared, X-ray absorption near edge structure, and extended X-ray absorption fine structure spectroscopies as various mixtures of H2, C2H4, and CO flowed over the samples. In contrast to the nonuniform metal complexes anchored to metal oxides, our zeolite-supported metal complexes were highly uniform, allowing precise determinations of the chemistry, including the role of the support as a macroligand. Zeolite- and MgO-supported Ir(C2H4)2 complexes are each rapidly converted to Ir(CO)2 upon contact with a pulse of CO, and the ¿CO frequencies indicate that the iridium is more electron-deficient when the support is the zeolite. The Ir(CO)2 complex supported on MgO was highly stable in the presence of various combinations of CO, C2H4, and helium. In contrast, the zeolite-supported Ir(CO)2 complex was found to be highly reactive, forming Ir(CO)3, Ir(CO)(C2H4), Ir(CO)2(C2H4), and Ir(CO)(C2H4)2. The ¿-bonded ethene ligands of the zeolite-supported Ir(C2H4)2 in H2 were facilely converted to ¿-bonded ethyl when treated. However, the stability of the ethene ligands was markedly increased when the support was changed to MgO or when a CO ligand was simultaneously bonded to the iridium. The rates of catalytic ethene hydrogenation and H2/D2 exchange in the presence of a catalyst initially consisting of Ir(C2H4)2 on the zeolite were found to be more than an order of magnitude higher than when MgO was the support. The iridium complexes containing one or more CO ligands were found to be inactive for H2/D2 exchange reactions when the support was MgO, but they were moderately active when it was the zeolite. The effects of the MgO and zeolite supports on reactivity and catalytic activity are attributed to their differences as ligands donating or withdrawing electrons, respectively.Lu, J.; Serna Merino, PM.; Gates, BC. (2011). Zeolite- and MgO-Supported Molecular Iridium Complexes: Support and Ligand Effects in Catalysis of Ethene Hydrogenation and H-D Exchange in the Conversion of H2 + D2. ACS CATALYSIS. 1(11):1549-1561. doi:10.1021/cs200397rS1549156111

    Zeolite- and MgO-Supported Molecular Iridium Complexes: Support and Ligand Effects in Catalysis of Ethene Hydrogenation and H–D Exchange in the Conversion of H<sub>2</sub> + D<sub>2</sub>

    No full text
    Zeolite- and MgO-supported mononuclear iridium diethene complexes were formed by the reaction of Ir(C<sub>2</sub>H<sub>4</sub>)<sub>2</sub>(acac) (acac = acetylacetonate, C<sub>5</sub>H<sub>7</sub>O<sub>2</sub><sup>–</sup>) with each support. Changes in the ligand environment of the supported iridium complexes were characterized by infrared, X-ray absorption near edge structure, and extended X-ray absorption fine structure spectroscopies as various mixtures of H<sub>2</sub>, C<sub>2</sub>H<sub>4</sub>, and CO flowed over the samples. In contrast to the nonuniform metal complexes anchored to metal oxides, our zeolite-supported metal complexes were highly uniform, allowing precise determinations of the chemistry, including the role of the support as a macroligand. Zeolite- and MgO-supported Ir(C<sub>2</sub>H<sub>4</sub>)<sub>2</sub> complexes are each rapidly converted to Ir(CO)<sub>2</sub> upon contact with a pulse of CO, and the ν<sub>CO</sub> frequencies indicate that the iridium is more electron-deficient when the support is the zeolite. The Ir(CO)<sub>2</sub> complex supported on MgO was highly stable in the presence of various combinations of CO, C<sub>2</sub>H<sub>4</sub>, and helium. In contrast, the zeolite-supported Ir(CO)<sub>2</sub> complex was found to be highly reactive, forming Ir(CO)<sub>3</sub>, Ir(CO)(C<sub>2</sub>H<sub>4</sub>), Ir(CO)<sub>2</sub>(C<sub>2</sub>H<sub>4</sub>), and Ir(CO)(C<sub>2</sub>H<sub>4</sub>)<sub>2</sub>. The π-bonded ethene ligands of the zeolite-supported Ir(C<sub>2</sub>H<sub>4</sub>)<sub>2</sub> in H<sub>2</sub> were facilely converted to σ-bonded ethyl when treated. However, the stability of the ethene ligands was markedly increased when the support was changed to MgO or when a CO ligand was simultaneously bonded to the iridium. The rates of catalytic ethene hydrogenation and H<sub>2</sub>/D<sub>2</sub> exchange in the presence of a catalyst initially consisting of Ir(C<sub>2</sub>H<sub>4</sub>)<sub>2</sub> on the zeolite were found to be more than an order of magnitude higher than when MgO was the support. The iridium complexes containing one or more CO ligands were found to be inactive for H<sub>2</sub>/D<sub>2</sub> exchange reactions when the support was MgO, but they were moderately active when it was the zeolite. The effects of the MgO and zeolite supports on reactivity and catalytic activity are attributed to their differences as ligands donating or withdrawing electrons, respectively
    corecore