1,942 research outputs found

    In vivo effect of FK506 on human pancreatic islets

    Get PDF
    The purpose of this study was to evaluate the in vivo effect of FK506 on human pancreatic islets. Twenty-five nude mice were made diabetic by one intravenous injection of streptozotocin. Approximately 600 islets were administered in the renal subcapsular space 3-5 days following streptozotocin administration. One week after transplantation, the mice were divided in four groups. In group 1, the animals received 1 injection of 0.5 ml of diluent i.p. daily for one week. In groups 2, 3, and 4 the treatments were daily i.p. injection of 0.3, 1, and 3 mg/kg FK506, respectively. After treatment, the functional integrity of the transplanted human islets was tested by measuring the plasma glucose and human C-peptide response to intraperitoneal glucose injection in groups 1 and 4. IPGTT alone was assessed in groups 2 and 3. The results indicate that i.p. administration of FK506 for one week at a dose 0.3 mg/kg/day did not result in any significant alteration of glucose disappearance and C-peptide response to IPGTT. Higher doses of FK506 produced a significant delay in glucose disappearance in groups 3 and 4, and a significant inhibition of glucose-mediated C-peptide response in group 4. © 1991 by Williams and Wilkins

    Recombinant Incretin-Secreting Microbe Improves Metabolic Dysfunction in High-Fat Diet Fed Rodents

    Get PDF
    peer-reviewedThe gut hormone glucagon-like peptide (GLP)-1 and its analogues represent a new generation of anti-diabetic drugs, which have also demonstrated propensity to modulate host lipid metabolism. Despite this, drugs of this nature are currently limited to intramuscular administration routes due to intestinal degradation. The aim of this study was to design a recombinant microbial delivery vector for a GLP-1 analogue and assess the efficacy of the therapeutic in improving host glucose, lipid and cholesterol metabolism in diet induced obese rodents. Diet-induced obese animals received either Lactobacillus paracasei NFBC 338 transformed to express a long-acting analogue of GLP-1 or the isogenic control microbe which solely harbored the pNZ44 plasmid. Short-term GLP-1 microbe intervention in rats reduced serum low-density lipoprotein cholesterol, triglycerides and triglyceride-rich lipoprotein cholesterol substantially. Conversely, extended GLP-1 microbe intervention improved glucose-dependent insulin secretion, glucose metabolism and cholesterol metabolism, compared to the high-fat control group. Interestingly, the microbe significantly attenuated the adiposity associated with the model and altered the serum lipidome, independently of GLP-1 secretion. These data indicate that recombinant incretin-secreting microbes may offer a novel and safe means of managing cholesterol metabolism and diet induced dyslipidaemia, as well as insulin sensitivity in metabolic dysfunction

    Diabetes-Related Ankyrin Repeat Protein (DARP/Ankrd23) Modifies Glucose Homeostasis by Modulating AMPK Activity in Skeletal Muscle.

    Get PDF
    Skeletal muscle is the major site for glucose disposal, the impairment of which closely associates with the glucose intolerance in diabetic patients. Diabetes-related ankyrin repeat protein (DARP/Ankrd23) is a member of muscle ankyrin repeat proteins, whose expression is enhanced in the skeletal muscle under diabetic conditions; however, its role in energy metabolism remains poorly understood. Here we report a novel role of DARP in the regulation of glucose homeostasis through modulating AMP-activated protein kinase (AMPK) activity. DARP is highly preferentially expressed in skeletal muscle, and its expression was substantially upregulated during myotube differentiation of C2C12 myoblasts. Interestingly, DARP-/- mice demonstrated better glucose tolerance despite similar body weight, while their insulin sensitivity did not differ from that in wildtype mice. We found that phosphorylation of AMPK, which mediates insulin-independent glucose uptake, in skeletal muscle was significantly enhanced in DARP-/- mice compared to that in wildtype mice. Gene silencing of DARP in C2C12 myotubes enhanced AMPK phosphorylation, whereas overexpression of DARP in C2C12 myoblasts reduced it. Moreover, DARP-silencing increased glucose uptake and oxidation in myotubes, which was abrogated by the treatment with AICAR, an AMPK activator. Of note, improved glucose tolerance in DARP-/- mice was abolished when mice were treated with AICAR. Mechanistically, gene silencing of DARP enhanced protein expression of LKB1 that is a major upstream kinase for AMPK in myotubes in vitro and the skeletal muscle in vivo. Together with the altered expression under diabetic conditions, our data strongly suggest that DARP plays an important role in the regulation of glucose homeostasis under physiological and pathological conditions, and thus DARP is a new therapeutic target for the treatment of diabetes mellitus

    Doc2b Protects β-Cells Against Inflammatory Damage and Enhances Function

    Get PDF
    Loss of functional β-cell mass is an early feature of type 1 diabetes. To release insulin, β-cells require soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes, as well as SNARE complex regulatory proteins like double C2 domain-containing protein β (Doc2b). We hypothesized that Doc2b deficiency or overabundance may confer susceptibility or protection, respectively, to the functional β-cell mass. Indeed, Doc2b+/- knockout mice show an unusually severe response to multiple-low-dose streptozotocin (MLD-STZ), resulting in more apoptotic β-cells and a smaller β-cell mass. In addition, inducible β-cell-specific Doc2b-overexpressing transgenic (βDoc2b-dTg) mice show improved glucose tolerance and resist MLD-STZ-induced disruption of glucose tolerance, fasting hyperglycemia, β-cell apoptosis, and loss of β-cell mass. Mechanistically, Doc2b enrichment enhances glucose-stimulated insulin secretion (GSIS) and SNARE activation and prevents the appearance of apoptotic markers in response to cytokine stress and thapsigargin. Furthermore, expression of a peptide containing the Doc2b tandem C2A and C2B domains is sufficient to confer the beneficial effects of Doc2b enrichment on GSIS, SNARE activation, and apoptosis. These studies demonstrate that Doc2b enrichment in the β-cell protects against diabetogenic and proapoptotic stress. Furthermore, they identify a Doc2b peptide that confers the beneficial effects of Doc2b and may be a therapeutic candidate for protecting functional β-cell mass

    Cationic Polystyrene Resolves Nonalcoholic Steatohepatitis, Obesity, and Metabolic Disorders by Promoting Eubiosis of Gut Microbiota and Decreasing Endotoxemia.

    Get PDF
    A pandemic of metabolic diseases, consisting of type 2 diabetes, nonalcoholic fatty liver disease, and obesity, has imposed critical challenges for societies worldwide, prompting investigation of underlying mechanisms and exploration of low-cost and effective treatment. In this report, we demonstrate that metabolic disorders in mice generated by feeding with a high-fat diet without dietary vitamin D can be prevented by oral administration of polycationic amine resin. Oral administration of cholestyramine, but not the control uncharged polystyrene, was able to sequester negatively charged bacterial endotoxin in the gut, leading to 1) reduced plasma endotoxin levels, 2) resolved systemic inflammation and hepatic steatohepatitis, and 3) improved insulin sensitivity. Gut dysbiosis, characterized as an increase of the phylum Firmicutes and a decrease of Bacteroidetes and Akkermansia muciniphila, was fully corrected by cholestyramine, indicating that the negatively charged components in the gut are critical for the dysbiosis. Furthermore, fecal bacteria transplant, derived from cholestyramine-treated animals, was sufficient to antagonize the metabolic disorders of the recipient mice. These results indicate that the negatively charged components produced by dysbiosis are critical for biogenesis of metabolic disorders and also show a potential application of cationic polystyrene to treat metabolic disorders through promoting gut eubiosis

    PON2 Deficiency Leads to Increased Susceptibility to Diet-Induced Obesity.

    Get PDF
    (1) Background: Paraoxonase 2 (PON2) is a ubiquitously expressed protein localized to endoplasmic reticulum and mitochondria. Previous studies have shown that PON2 exhibits anti-oxidant and anti-inflammatory functions, and PON2-deficient (PON2-def) mice are more susceptible to atherosclerosis. Furthermore, PON2 deficiency leads to impaired mitochondrial function. (2) Methods: In this study, we examined the susceptibility of PON2-def mice to diet-induced obesity. (3) Results: After feeding of an obesifying diet, the PON2-def mice exhibited significantly increased body weight due to increased fat mass weight as compared to the wild-type (WT) mice. The increased adiposity was due, in part, to increased adipocyte hypertrophy. PON2-def mice had increased fasting insulin levels and impaired glucose tolerance after diet-induced obesity. PON2-def mice had decreased oxygen consumption and energy expenditure. Furthermore, the oxygen consumption rate of subcutaneous fat pads from PON2-def mice was lower compared to WT mice. Gene expression analysis of the subcutaneous fat pads revealed decreased expression levels of markers for beige adipocytes in PON2-def mice. (4) Conclusions: We concluded that altered systemic energy balance, perhaps due to decreased beige adipocytes and mitochondrial dysfunction in white adipose tissue of PON2-def mice, leads to increased obesity in these mice

    Adiponectin improves coronary no-reflow injury by protecting the endothelium in rats with type 2 diabetes mellitus.

    Get PDF
    To determine the effect of adiponectin (APN) on the coronary no-reflow (NR) injury in rats with Type 2 diabetes mellitus (T2DM), 80 male Sprague-Dawley rats were fed with a high-sugar-high-fat diet to build a T2DM model. Rats received vehicle or APN in the last week and then were subjected to myocardial ischemia reperfusion (MI/R) injury. Endothelium-dependent vasorelaxation of the thoracic aorta was significantly decreased and serum levels of endothelin-1 (ET-1), intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were noticably increased in T2DM rats compared with rats without T2DM. Serum APN was positively correlated with the endothelium-dependent vasorelaxation, but negatively correlated with the serum level of ET-1. Treatment with APN improved T2DM-induced endothelium-dependent vasorelaxation, recovered cardiac function, and decreased both NR size and the levels of ET-1, ICAM-1 and VCAM-1. Hypoadiponectinemia was associated with the aggravation of coronary NR in T2DM rats. APN could alleviate coronary NR injury in T2DM rats by protecting the endothelium and improving microcirculation

    Disruption of beta cell acetyl-CoA carboxylase-1 in mice impairs insulin secretion and beta cell mass

    Get PDF
    Aims/hypothesis: Pancreatic beta cells secrete insulin to maintain glucose homeostasis, and beta cell failure is a hallmark of type 2 diabetes. Glucose triggers insulin secretion in beta cells via oxidative mitochondrial pathways. However, it also feeds mitochondrial anaplerotic pathways, driving citrate export and cytosolic malonyl-CoA production by the acetyl-CoA carboxylase 1 (ACC1) enzyme. This pathway has been proposed as an alternative glucose-sensing mechanism, supported mainly by in vitro data. Here, we sought to address the role of the beta cell ACC1-coupled pathway in insulin secretion and glucose homeostasis in vivo. Methods: Acaca, encoding ACC1 (the principal ACC isoform in islets), was deleted in beta cells of mice using the Cre/loxP system. Acaca floxed mice were crossed with Ins2cre mice (βACC1KO; life-long beta cell gene deletion) or Pdx1creER mice (tmx-βACC1KO; inducible gene deletion in adult beta cells). Beta cell function was assessed using in vivo metabolic physiology and ex vivo islet experiments. Beta cell mass was analysed using histological techniques. Results: βACC1KO and tmx-βACC1KO mice were glucose intolerant and had defective insulin secretion in vivo. Isolated islet studies identified impaired insulin secretion from beta cells, independent of changes in the abundance of neutral lipids previously implicated as amplification signals. Pancreatic morphometry unexpectedly revealed reduced beta cell size in βACC1KO mice but not in tmx-βACC1KO mice, with decreased levels of proteins involved in the mechanistic target of rapamycin kinase (mTOR)-dependent protein translation pathway underpinning this effect. Conclusions/interpretation: Our study demonstrates that the beta cell ACC1-coupled pathway is critical for insulin secretion in vivo and ex vivo and that it is indispensable for glucose homeostasis. We further reveal a role for ACC1 in controlling beta cell growth prior to adulthood.</p
    corecore