251,071 research outputs found
Entanglement, Dephasing, and Phase Recovery via Cross-Correlation Measurements of Electrons
Determination of the path taken by a quantum particle leads to a suppression
of interference and to a classical behavior. We employ here a quantum 'which
path' detector to perform accurate path determination in a
two-path-electron-interferometer; leading to full suppression of the
interference. Following the dephasing process we recover the interference by
measuring the cross-correlation between the interferometer and detector
currents. Under our measurement conditions every interfering electron is
dephased by approximately a single electron in the detector - leading to mutual
entanglement of approximately single pairs of electrons.Comment: 13 Pages, 5 Figure
Suppression of Biodynamic Interference by Adaptive Filtering
Preliminary experimental results obtained in moving base simulator tests are presented. Both for pursuit and compensatory tracking tasks, a strong deterioration in tracking performance due to biodynamic interference is found. The use of adaptive filtering is shown to substantially alleviate these effects, resulting in a markedly improved tracking performance and reduction in task difficulty. The effect of simulator motion and of adaptive filtering on human operator describing functions is investigated. Adaptive filtering is found to substantially increase pilot gain and cross-over frequency, implying a more tight tracking behavior. The adaptive filter is found to be effective in particular for high-gain proportional dynamics, low display forcing function power and for pursuit tracking task configurations
Spontaneous-emission suppression via multiphoton quantum interference
The spontaneous emission is investigated for an effective atomic two-level
system in an intense coherent field with frequency lower than the
vacuum-induced decay width. As this additional low-frequency field is assumed
to be intense, multiphoton processes may be induced, which can be seen as
alternative transition pathways in addition to the simple spontaneous decay.
The interplay of the various interfering transition pathways influences the
decay dynamics of the two-level system and may be used to slow down the
spontaneous decay considerably. We derive from first principles an expression
for the Hamiltonian including up to three-photon processes. This Hamiltonian is
then applied to a quantum mechanical simulation of the decay dynamics of the
two-level system. Finally, we discuss numerical results of this simulation
based on a rubidium atom and show that the spontaneous emission in this system
may be suppressed substantially.Comment: 18 pages, 7 figures, latest version with minor change
- …