61,401 research outputs found
On the Balance of Intercalation and Conversion Reactions in Battery Cathodes
We present a thermodynamic analysis of the driving forces for intercalation
and conversion reactions in battery cathodes across a range of possible working
ion, transition metal, and anion chemistries. Using this body of results, we
analyze the importance of polymorph selection as well as chemical composition
on the ability of a host cathode to support intercalation reactions. We find
that the accessibility of high energy charged polymorphs in oxides generally
leads to larger intercalation voltages favoring intercalation reactions,
whereas sulfides and selenides tend to favor conversion reactions. Furthermore,
we observe that Cr-containing cathodes favor intercalation more strongly than
those with other transition metals. Finally, we conclude that two-electron
reduction of transition metals (as is possible with the intercalation of a
ion) will favor conversion reactions in the compositions we studied
Transport and Magnetic Properties of FexVse2 (x = 0 - 0.33)
We present our results of the effect of Fe intercalation on the structural,
transport and magnetic properties of 1T-VSe2. Intercalation of iron, suppresses
the 110K charge density wave (CDW) transition of the 1T-VSe2. For the higher
concentration of iron, formation of a new kind of first order transition at
160K takes place, which go on stronger for the 33% Fe intercalation.
Thermopower of the FexVSe2 compounds (x = 0 - 0.33), however do not show any
anomaly around the transition. The intercalation of Fe does not trigger any
magnetism in the weak paramagnetic 1T-VSe2, and Fe is the low spin state of
Fe3+.Comment: 7 pages, 8 figures, 2 table
The mechanism of caesium intercalation of graphene
Properties of many layered materials, including copper- and iron-based
superconductors, topological insulators, graphite and epitaxial graphene can be
manipulated by inclusion of different atomic and molecular species between the
layers via a process known as intercalation. For example, intercalation in
graphite can lead to superconductivity and is crucial in the working cycle of
modern batteries and supercapacitors. Intercalation involves complex diffusion
processes along and across the layers, but the microscopic mechanisms and
dynamics of these processes are not well understood. Here we report on a novel
mechanism for intercalation and entrapment of alkali-atoms under epitaxial
graphene. We find that the intercalation is adjusted by the van der Waals
interaction, with the dynamics governed by defects anchored to graphene
wrinkles. Our findings are relevant for the future design and application of
graphene-based nano-structures. Similar mechanisms can also play a role for
intercalation of layered materials.Comment: 8 pages, 7 figures in published form, supplementary information
availabl
Intercalation events visualized in single microcrystals of graphite.
The electrochemical intercalation of layered materials, particularly graphite, is fundamental to the operation of rechargeable energy-storage devices such as the lithium-ion battery and the carbon-enhanced lead-acid battery. Intercalation is thought to proceed in discrete stages, where each stage represents a specific structure and stoichiometry of the intercalant relative to the host. However, the three-dimensional structures of the stages between unintercalated and fully intercalated are not known, and the dynamics of the transitions between stages are not understood. Using optical and scanning transmission electron microscopy, we video the intercalation of single microcrystals of graphite in concentrated sulfuric acid. Here we find that intercalation charge transfer proceeds through highly variable current pulses that, although directly associated with structural changes, do not match the expectations of the classical theories. Evidently random nanoscopic defects dominate the dynamics of intercalation
Dynamics of graphite fiber intercalation: In situ resistivity measurements with a four point probe
The dynamics of ferric chloride intercalation of single graphite fibers were studied, in situ, using a four point dc bridge. Measurements before, during and after the intercalation showed that the intercalation occurred within minutes at 200 C. Changes in fiber resistivity after exposure to air suggested hydration of the graphite intercalation compound. Deintercalation of the ferric chloride was initiated at temperatures in excess of 400 C. cycling the intercalant into and out of the graphite fiber gave no improvements in fiber resistivity. The activation energy of the ferric chloride intercalation reaction was found to be 17 + or - 4 kcal/mol 1 consistent with the concept of a preliminary nucleation step in the intercalation reaction
Strong dopant dependence of electric transport in ion-gated MoS2
We report modifications of the temperature-dependent transport properties of
thin flakes via field-driven ion intercalation in an electric
double layer transistor. We find that intercalation with ions
induces the onset of an inhomogeneous superconducting state. Intercalation with
leads instead to a disorder-induced incipient metal-to-insulator
transition. These findings suggest that similar ionic species can provide
access to different electronic phases in the same material.Comment: 5 pages, 3 figure
- …