3,444 research outputs found

    Integral projection models for species with complex demography

    Get PDF
    Matrix projection models occupy a central role in population and conservation biology. Matrix models divide a population into discrete classes, even if the structuring trait exhibits continuous variation ( e. g., body size). The integral projection model ( IPM) avoids discrete classes and potential artifacts from arbitrary class divisions, facilitates parsimonious modeling based on smooth relationships between individual state and demographic performance, and can be implemented with standard matrix software. Here, we extend the IPM to species with complex demographic attributes, including dormant and active life stages, cross- classification by several attributes ( e. g., size, age, and condition), and changes between discrete and continuous structure over the life cycle. We present a general model encompassing these cases, numerical methods, and theoretical results, including stable population growth and sensitivity/ elasticity analysis for density- independent models, local stability analysis in density- dependent models, and optimal/ evolutionarily stable strategy life- history analysis. Our presentation centers on an IPM for the thistle Onopordum illyricum based on a 6- year field study. Flowering and death probabilities are size and age dependent, and individuals also vary in a latent attribute affecting survival, but a predictively accurate IPM is completely parameterized by fitting a few regression equations. The online edition of the American Naturalist includes a zip archive of R scripts illustrating our suggested methods

    Transient LTRE analysis reveals the demographic and trait-mediated processes that buffer population growth.

    Get PDF
    Temporal variation in environmental conditions affects population growth directly via its impact on vital rates, and indirectly through induced variation in demographic structure and phenotypic trait distributions. We currently know very little about how these processes jointly mediate population responses to their environment. To address this gap, we develop a general transient life table response experiment (LTRE) which partitions the contributions to population growth arising from variation in (1) survival and reproduction, (2) demographic structure, (3) trait values and (4) climatic drivers. We apply the LTRE to a population of yellow-bellied marmots (Marmota flaviventer) to demonstrate the impact of demographic and trait-mediated processes. Our analysis provides a new perspective on demographic buffering, which may be a more subtle phenomena than is currently assumed. The new LTRE framework presents opportunities to improve our understanding of how trait variation influences population dynamics and adaptation in stochastic environments

    Experimental determination of the state-dependent enhancement of the electron-positron momentum density in solids

    Full text link
    The state-dependence of the enhancement of the electron-positron momentum density is investigated for some transition and simple metals (Cr, V, Ag and Al). Quantitative comparison with linearized muffin-tin orbital calculations of the corresponding quantity in the first Brillouin zone is shown to yield a measurement of the enhancement of the s, p and d states, independent of any parameterizations in terms of the electron density local to the positron. An empirical correction that can be applied to a first-principles state-dependent model is proposed that reproduces the measured state-dependence very well, yielding a general, predictive model for the enhancement of the momentum distribution of positron annihilation measurements, including those of angular correlation and coincidence Doppler broadening techniques

    Integral Projection Models for host-parasite systems with an application to amphibian chytrid fungus

    Get PDF
    1. Host–parasite models are typically constructed under either a microparasite or macroparasite paradigm. However, this has long been recognized as a false dichotomy because many infectious disease agents, including most fungal pathogens, have attributes of both microparasites and macroparasites. 2. We illustrate how Integral Projection Models (IPMs) provide a novel modelling framework to represent both types of pathogens. We build a simple host–parasite IPM that tracks both the number of susceptible and infected hosts and the distribution of parasite burdens in infected hosts. 3. The vital rate functions necessary to build IPMs for disease dynamics share many commonalities with classic micro and macroparasite models and we discuss how these functions can be parameterized to build a host–parasite IPM. We illustrate the utility of this IPM approach by modelling the temperature-dependent epizootic dynamics of amphibian chytrid fungus in Mountain yellow-legged frogs (Rana muscosa). 4. The host–parasite IPM can be applied to other diseases such as facial tumour disease in Tasmanian devils and white-nose syndrome in bats. Moreover, the host–parasite IPM can be easily extended to capture more complex disease dynamics and provides an exciting new frontier in modelling wildlife disease.Full Tex
    • …
    corecore