92,107 research outputs found

    Different types of integrability and their relation to decoherence in central spin models

    Get PDF
    We investigate the relation between integrability and decoherence in central spin models with more than one central spin. We show that there is a transition between integrability ensured by the Bethe ansatz and integrability ensured by complete sets of commuting operators. This has a significant impact on the decoherence properties of the system, suggesting that it is not necessarily integrability or nonintegrability which is related to decoherence, but rather its type or a change from integrability to nonintegrability.Comment: 4 pages, 3 figure

    Integrability of oscillatory functions on local fields: transfer principles

    Get PDF
    For oscillatory functions on local fields coming from motivic exponential functions, we show that integrability over QpnQ_p^n implies integrability over Fp((t))nF_p ((t))^n for large pp, and vice versa. More generally, the integrability only depends on the isomorphism class of the residue field of the local field, once the characteristic of the residue field is large enough. This principle yields general local integrability results for Harish-Chandra characters in positive characteristic as we show in other work. Transfer principles for related conditions such as boundedness and local integrability are also obtained. The proofs rely on a thorough study of loci of integrability, to which we give a geometric meaning by relating them to zero loci of functions of a specific kind.Comment: 44 page

    Nearly circular domains which are integrable close to the boundary are ellipses

    Full text link
    The Birkhoff conjecture says that the boundary of a strictly convex integrable billiard table is necessarily an ellipse. In this article, we consider a stronger notion of integrability, namely integrability close to the boundary, and prove a local version of this conjecture: a small perturbation of an ellipse of small eccentricity which preserves integrability near the boundary, is itself an ellipse. This extends the result in [1], where integrability was assumed on a larger set. In particular, it shows that (local) integrability near the boundary implies global integrability. One of the crucial ideas in the proof consists in analyzing Taylor expansion of the corresponding action-angle coordinates with respect to the eccentricity parameter, deriving and studying higher order conditions for the preservation of integrable rational caustics.Comment: 64 pages, 3 figures. Final revised version, to appear on Geometric and Functional Analysis (GAFA

    Integrability, Non-integrability and confinement

    Full text link
    We discuss the main features of quantum integrable models taking the classes of universality of the Ising model and the repulsive Lieb-Liniger model as paradigmatic examples. We address the breaking of integrability by means of two approaches, the Form Factor Perturbation Theory and semiclassical methods. Each of them has its own advantage. Using the first approach, one can relate the confinement phenomena of topological excitations to the semi-locality of the operator which breaks integrability. Using the second approach, one can control the bound states which arise in each phase of the theory and predict that their number cannot be more than two.Comment: Invited talk at StatPhys24, Cairns (Australia) 2010. 27 pages, 16 figure
    corecore