84,749 research outputs found
Terahertz underdamped vibrational motion governs protein-ligand binding in solution
Low-frequency collective vibrational modes in proteins have been proposed as being responsible for efficiently directing biochemical reactions and biological energy transport. However, evidence of the existence of delocalized vibrational modes is scarce and proof of their involvement in biological function absent. Here we apply extremely sensitive femtosecond optical Kerr-effect spectroscopy to study the depolarized Raman spectra of lysozyme and its complex with the inhibitor triacetylchitotriose in solution. Underdamped delocalized vibrational modes in the terahertz frequency domain are identified and shown to blue-shift and strengthen upon inhibitor binding. This demonstrates that the ligand-binding coordinate in proteins is underdamped and not simply solvent-controlled as previously assumed. The presence of such underdamped delocalized modes in proteins may have significant implications for the understanding of the efficiency of ligand binding and protein–molecule interactions, and has wider implications for biochemical reactivity and biological function
Reassessment of Acarbose as a Transition State Analogue Inhibitor of Cyclodextrin Glycosyltransferase
The binding of several different active site mutants of Bacillus circulans cyclodextrin glycosyltransferase to the inhibitor acarbose has been investigated through measurement of Ki values. The mutations represent several key amino acid positions, most of which are believed to play important roles in governing the product specificity of cyclodextrin glycosyltransferase. Michaelis-Menten parameters for the substrates α-maltotriosyl fluoride (αG3F) and α-glucosyl fluoride (αGF) with each mutant have been determined by following the enzyme-catalyzed release of fluoride with an ion-selective fluoride electrode. In both cases, reasonable correlations are observed in logarithmic plots relating the Ki value for acarbose with each mutant and both kcat/Km and Km for the hydrolysis of either substrate by the corresponding mutants. This indicates that acarbose, as an inhibitor, is mimicking aspects of both the ground state and the transition state. A better correlation is observed for αGF (r = 0.98) than αG3F (r = 0.90), which can be explained in terms of the modes of binding of these substrates and acarbose. Re-refinement of the previously determined crystal structure of wild-type CGTase complexed with acarbose reveals a binding mode consistent with the transition state analogue character of this inhibitor.
Electron-vibration-vibration two-dimensional infrared spectroscopy: a tool to investigate interactions in plant proteins and mammalian peptides
The structural elucidation and characterisation of biomolecular complexes is crucial to both the agrichemical and pharmaceutical industries. Understanding the specific interactions that govern protein-inhibitor interactions enables more intelligent design of herbicide and drug candidates. While there are powerful tools currently available to obtain protein-inhibitor structures, they alone cannot answer the questions posed by protein-inhibitor binding. EVV 2DIR spectroscopy is a novel technique capable of detecting protein-inhibitor interactions that can provide structural information complementary to that of other methods (such as direct measurement of hydrogen bond formation) to build up a more complete picture of protein-inhibitor binding.
This thesis presents the first EVV 2DIR spectra of plant protein-inhibitor complexes, comprised of the herbicide target 4-Hydroxyphenylpyruvic acid dioxygenase (HPPD) bound to various herbicide candidates. Difference spectra of HPPD and project compound 329 consistently showed one cross-peak that could be tentatively assigned to coupled vibrational modes specific to protein-inhibitor binding. The data presented exhibits the capability of EVV 2DIR spectroscopy to detect protein-inhibitor binding for plant systems and demonstrates its potential as a tool for the screening of herbicide candidates.
The first EVV 2DIR spectra for the peptide amyloid beta (1-40) both with and without Cu(II) and Zn(II) are also presented. Comparison of the spectra reveals changes indicative of the literature observations that amyloid beta (1-40) forms rigid fibrils at an acidic pH, and that the addition of Cu(II) and Zn(II) disrupts and retards fibril formation. Tentative assignments were made for the resultant spectra, however a lack of corresponding calculated EVV 2DIR spectra (previously produced from vibrational modes elucidated via DFT calculations) made definitive assignment of such complex spectra not possible. There are currently no published structures of amyloid beta (1-40) with Cu(II), so accompanying calculated spectra enabling conclusive assignments may reveal significant structural insights into the coordination of copper by amyloid beta in the future.Open Acces
Structure-activity relationships on cynnamoyl derivatives as inhibitors of p300 Histone acetyltransferase
Human p300 is a polyhedric transcriptional coactivator, playing a crucial role by acetylating histones on specific lysine residues. A great deal of evidences shows that p300 is involved in several diseases as leukemia, tumors and viral infection. Its involvement in pleiotropic biological roles and connections to diseases provide the rationale as to how its modulation could represent an amenable drug target. Several p300 inhibitors (HATi) have been described so far, but all suffer from low potency, lack of specificity or low cell-permeability, highlighting the need to find more effective inhibitors. Our cinnamoyl derivative, RC 56, was identified as active and selective p300 inhibitor, proving to be a good hit candidate to investigate the structure-activity relationship towards p300. Herein we describe the design, synthesis and biological evaluation of new HATi structurally related to our hit, investigating, moreover, the interactions between p300 and the best-emerged hits by means of induced fit docking and molecular dynamics simulations, gaining insight on the peculiar chemical features that influenced their activity toward the targeted enzyme
Pyrone-based inhibitors of metalloproteinase types 2 and 3 may work as conformation-selective inhibitors.
Matrix metalloproteinases are zinc-containing enzymes capable of degrading all components of the extracellular matrix. Owing to their role in human disease, matrix metalloproteinase have been the subject of extensive study. A bioinorganic approach was recently used to identify novel inhibitors based on a maltol zinc-binding group, but accompanying molecular-docking studies failed to explain why one of these inhibitors, AM-6, had approximately 2500-fold selectivity for MMP-3 over MMP-2. A number of studies have suggested that the matrix-metalloproteinase active site is highly flexible, leading some to speculate that differences in active-site flexibility may explain inhibitor selectivity. To extend the bioinorganic approach in a way that accounts for MMP-2 and MMP-3 dynamics, we here investigate the predicted binding modes and energies of AM-6 docked into multiple structures extracted from matrix-metalloproteinase molecular dynamics simulations. Our findings suggest that accounting for protein dynamics is essential for the accurate prediction of binding affinity and selectivity. Additionally, AM-6 and other similar inhibitors likely select for and stabilize only a subpopulation of all matrix-metalloproteinase conformations sampled by the apo protein. Consequently, when attempting to predict ligand affinity and selectivity using an ensemble of protein structures, it may be wise to disregard protein conformations that cannot accommodate the ligand
Polymyxins and quinazolines are LSD1/KDM1A inhibitors with unusual structural features
Because of its involvement in the progression of several malignant tumors, the histone lysine-specific demethylase 1 (LSD1) has become a prominent drug target in modern medicinal chemistry research. We report on the discovery of two classes of noncovalent inhibitors displaying unique structural features. The antibiotics polymyxins bind at the entrance of the substrate cleft, where their highly charged cyclic moiety interacts with a cluster of positively charged amino acids. The same site is occupied by quinazoline-based compounds, which were found to inhibit the enzyme through a most peculiar mode because they form a pile of five to seven molecules that obstruct access to the active center. These data significantly indicate unpredictable strategies for the development of epigenetic inhibitors
New trends for metal complexes with anticancer activity
Medicinal inorganic chemistry can exploit the unique properties of metal ions for the design of new drugs. This has, for instance, led to the clinical application of chemotherapeutic agents for cancer treatment, such as cisplatin. The use of cisplatin is, however, severely limited by its toxic side-effects. This has spurred chemists to employ different strategies in the development of new metal-based anticancer agents with different mechanisms of action. Recent trends in the field are discussed in this review. These include the more selective delivery and/or activation of cisplatin-related prodrugs and the discovery of new non-covalent interactions with the classical target, DNA. The use of the metal as scaffold rather than reactive centre and the departure from the cisplatin paradigm of activity towards a more targeted, cancer cell-specific approach, a major trend, are discussed as well. All this, together with the observation that some of the new drugs are organometallic complexes, illustrates that exciting times lie ahead for those interested in ‘metals in medicine
Computational structure‐based drug design: Predicting target flexibility
The role of molecular modeling in drug design has experienced a significant revamp in the last decade. The increase in computational resources and molecular models, along with software developments, is finally introducing a competitive advantage in early phases of drug discovery. Medium and small companies with strong focus on computational chemistry are being created, some of them having introduced important leads in drug design pipelines. An important source for this success is the extraordinary development of faster and more efficient techniques for describing flexibility in three‐dimensional structural molecular modeling. At different levels, from docking techniques to atomistic molecular dynamics, conformational sampling between receptor and drug results in improved predictions, such as screening enrichment, discovery of transient cavities, etc. In this review article we perform an extensive analysis of these modeling techniques, dividing them into high and low throughput, and emphasizing in their application to drug design studies. We finalize the review with a section describing our Monte Carlo method, PELE, recently highlighted as an outstanding advance in an international blind competition and industrial benchmarks.We acknowledge the BSC-CRG-IRB Joint Research Program in Computational Biology. This work was supported by a grant
from the Spanish Government CTQ2016-79138-R.J.I. acknowledges support from SVP-2014-068797, awarded by the Spanish Government.Peer ReviewedPostprint (author's final draft
- …