4,627,507 research outputs found
A unified framework for information integration based on information geometry
We propose a unified theoretical framework for quantifying spatio-temporal
interactions in a stochastic dynamical system based on information geometry. In
the proposed framework, the degree of interactions is quantified by the
divergence between the actual probability distribution of the system and a
constrained probability distribution where the interactions of interest are
disconnected. This framework provides novel geometric interpretations of
various information theoretic measures of interactions, such as mutual
information, transfer entropy, and stochastic interaction in terms of how
interactions are disconnected. The framework therefore provides an intuitive
understanding of the relationships between the various quantities. By extending
the concept of transfer entropy, we propose a novel measure of integrated
information which measures causal interactions between parts of a system.
Integrated information quantifies the extent to which the whole is more than
the sum of the parts and can be potentially used as a biological measure of the
levels of consciousness
Information preserving structures: A general framework for quantum zero-error information
Quantum systems carry information. Quantum theory supports at least two
distinct kinds of information (classical and quantum), and a variety of
different ways to encode and preserve information in physical systems. A
system's ability to carry information is constrained and defined by the noise
in its dynamics. This paper introduces an operational framework, using
information-preserving structures to classify all the kinds of information that
can be perfectly (i.e., with zero error) preserved by quantum dynamics. We
prove that every perfectly preserved code has the same structure as a matrix
algebra, and that preserved information can always be corrected. We also
classify distinct operational criteria for preservation (e.g., "noiseless",
"unitarily correctible", etc.) and introduce two new and natural criteria for
measurement-stabilized and unconditionally preserved codes. Finally, for
several of these operational critera, we present efficient (polynomial in the
state-space dimension) algorithms to find all of a channel's
information-preserving structures.Comment: 29 pages, 19 examples. Contains complete proofs for all the theorems
in arXiv:0705.428
Building information modelling project decision support framework
Building Information Modelling (BIM) is an information technology [IT] enabled approach to managing design data in the AEC/FM (Architecture, Engineering and Construction/ Facilities Management) industry. BIM enables improved interdisciplinary collaboration across distributed teams, intelligent documentation and information retrieval, greater consistency in building data, better conflict detection and enhanced facilities management. Despite the apparent benefits the adoption of BIM in practice has been slow. Workshops with industry focus groups were conducted to identify the industry needs, concerns and expectations from participants who had implemented BIM or were BIM “ready”. Factors inhibiting BIM adoption include lack of training, low business incentives, perception of lack of rewards, technological concerns, industry fragmentation related to uneven ICT adoption practices, contractual matters and resistance to changing current work practice. Successful BIM usage depends on collective adoption of BIM across the different disciplines and support by the client. The relationship of current work practices to future BIM scenarios was identified as an important strategy as the participants believed that BIM cannot be efficiently used with traditional practices and methods. The key to successful implementation is to explore the extent to which current work practices must change. Currently there is a perception that all work practices and processes must adopt and change for effective usage of BIM. It is acknowledged that new roles and responsibilities are emerging and that different parties will lead BIM on different projects. A contingency based approach to the problem of implementation was taken which relies upon integration of BIM project champion, procurement strategy, team capability analysis, commercial software availability/applicability and phase decision making and event analysis. Organizations need to understand: (a) their own work processes and requirements; (b) the range of BIM applications available in the market and their capabilities (c) the potential benefits of different BIM applications and their roles in different phases of the project lifecycle, and (d) collective supply chain adoption capabilities. A framework is proposed to support organizations selection of BIM usage strategies that meet their project requirements. Case studies are being conducted to develop the framework. The results of the preliminary design management case study is presented for contractor led BIM specific to the design and construct procurement strategy
- …