3,484,111 research outputs found
Information capacity of quantum observable
In this paper we consider the classical capacities of quantum-classical
channels corresponding to measurement of observables. Special attention is paid
to the case of continuous observables. We give the formulas for unassisted and
entanglement-assisted classical capacities and consider some
explicitly solvable cases which give simple examples of entanglement-breaking
channels with We also elaborate on the ensemble-observable duality
to show that for the measurement channel is related to the
-quantity for the dual ensemble in the same way as is related to the
accessible information. This provides both accessible information and the
-quantity for the quantum ensembles dual to our examples.Comment: 13 pages. New section and references are added concerning the
ensemble-observable dualit
Information capacity of the Hopfield model
The information capacity of general forms of memory is formalized. The number of bits of information that can be stored in the Hopfield model of associative memory is estimated. It is found that the asymptotic information capacity of a Hopfield network of N neurons is of the order N^3b. The number of arbitrary state vectors that can be made stable in a Hopfield network of N neurons is proved to be bounded above by N
Information capacity of genetic regulatory elements
Changes in a cell's external or internal conditions are usually reflected in
the concentrations of the relevant transcription factors. These proteins in
turn modulate the expression levels of the genes under their control and
sometimes need to perform non-trivial computations that integrate several
inputs and affect multiple genes. At the same time, the activities of the
regulated genes would fluctuate even if the inputs were held fixed, as a
consequence of the intrinsic noise in the system, and such noise must
fundamentally limit the reliability of any genetic computation. Here we use
information theory to formalize the notion of information transmission in
simple genetic regulatory elements in the presence of physically realistic
noise sources. The dependence of this "channel capacity" on noise parameters,
cooperativity and cost of making signaling molecules is explored
systematically. We find that, at least in principle, capacities higher than one
bit should be achievable and that consequently genetic regulation is not
limited the use of binary, or "on-off", components.Comment: 17 pages, 9 figure
Classical information capacity of superdense coding
Classical communication through quantum channels may be enhanced by sharing entanglement. Superdense
coding allows the encoding, and transmission, of up to two classical bits of information in a single qubit. In this
paper, the maximum classical channel capacity for states that are not maximally entangled is derived. Particular
schemes are then shown to attain this capacity, first for pairs of qubits, and second for pairs of qutrits
Nonorthogonal Quantum States Maximize Classical Information Capacity
I demonstrate that, rather unexpectedly, there exist noisy quantum channels
for which the optimal classical information transmission rate is achieved only
by signaling alphabets consisting of nonorthogonal quantum states.Comment: 5 pages, REVTeX, mild extension of results, much improved
presentation, to appear in Physical Review Letter
- …