3,484,111 research outputs found

    Information capacity of quantum observable

    Full text link
    In this paper we consider the classical capacities of quantum-classical channels corresponding to measurement of observables. Special attention is paid to the case of continuous observables. We give the formulas for unassisted and entanglement-assisted classical capacities C,CeaC,C_{ea} and consider some explicitly solvable cases which give simple examples of entanglement-breaking channels with C<Cea.C<C_{ea}. We also elaborate on the ensemble-observable duality to show that CeaC_{ea} for the measurement channel is related to the χ\chi-quantity for the dual ensemble in the same way as CC is related to the accessible information. This provides both accessible information and the χ\chi-quantity for the quantum ensembles dual to our examples.Comment: 13 pages. New section and references are added concerning the ensemble-observable dualit

    Information capacity of the Hopfield model

    Get PDF
    The information capacity of general forms of memory is formalized. The number of bits of information that can be stored in the Hopfield model of associative memory is estimated. It is found that the asymptotic information capacity of a Hopfield network of N neurons is of the order N^3b. The number of arbitrary state vectors that can be made stable in a Hopfield network of N neurons is proved to be bounded above by N

    Information capacity of genetic regulatory elements

    Full text link
    Changes in a cell's external or internal conditions are usually reflected in the concentrations of the relevant transcription factors. These proteins in turn modulate the expression levels of the genes under their control and sometimes need to perform non-trivial computations that integrate several inputs and affect multiple genes. At the same time, the activities of the regulated genes would fluctuate even if the inputs were held fixed, as a consequence of the intrinsic noise in the system, and such noise must fundamentally limit the reliability of any genetic computation. Here we use information theory to formalize the notion of information transmission in simple genetic regulatory elements in the presence of physically realistic noise sources. The dependence of this "channel capacity" on noise parameters, cooperativity and cost of making signaling molecules is explored systematically. We find that, at least in principle, capacities higher than one bit should be achievable and that consequently genetic regulation is not limited the use of binary, or "on-off", components.Comment: 17 pages, 9 figure

    Classical information capacity of superdense coding

    Get PDF
    Classical communication through quantum channels may be enhanced by sharing entanglement. Superdense coding allows the encoding, and transmission, of up to two classical bits of information in a single qubit. In this paper, the maximum classical channel capacity for states that are not maximally entangled is derived. Particular schemes are then shown to attain this capacity, first for pairs of qubits, and second for pairs of qutrits

    Nonorthogonal Quantum States Maximize Classical Information Capacity

    Get PDF
    I demonstrate that, rather unexpectedly, there exist noisy quantum channels for which the optimal classical information transmission rate is achieved only by signaling alphabets consisting of nonorthogonal quantum states.Comment: 5 pages, REVTeX, mild extension of results, much improved presentation, to appear in Physical Review Letter
    corecore