124,710 research outputs found

    TIV vaccination modulates host responses to influenza virus infection that correlate with protection against bacterial superinfection

    Get PDF
    Background: Influenza virus infection predisposes to secondary bacterial pneumonia. Currently licensed influenza vaccines aim at the induction of neutralizing antibodies and are less effective if the induction of neutralizing antibodies is low and/or the influenza virus changes its antigenic surface. We investigated the effect of suboptimal vaccination on the outcome of post-influenza bacterial superinfection. Methods: We established a mouse vaccination model that allows control of disease severity after influenza virus infection despite inefficient induction of virus-neutralizing antibody titers by vaccination. We investigated the effect of vaccination on virus-induced host immune responses and on the outcome of superinfection with Staphylococcus aureus. Results: Vaccination with trivalent inactivated virus vaccine (TIV) reduced morbidity after influenza A virus infection but did not prevent virus replication completely. Despite the poor induction of influenza-specific antibodies, TIV protected from mortality after bacterial superinfection. Vaccination limited loss of alveolar macrophages and reduced levels of infiltrating pulmonary monocytes after influenza virus infection. Interestingly, TIV vaccination resulted in enhanced levels of eosinophils after influenza virus infection and recruitment of neutrophils in both lungs and mediastinal lymph nodes after bacterial superinfection. Conclusion: These observations highlight the importance of disease modulation by influenza vaccination, even when suboptimal, and suggest that influenza vaccination is still beneficial to protect during bacterial superinfection in the absence of complete virus neutralization

    Influenza surveillance among children with pneumonia admitted to a district hospital in coastal Kenya, 2007-2010

    Get PDF
    Background: Influenza data gaps in sub-Saharan Africa include incidence, case fatality, seasonal patterns, and associations with prevalent disorders. Methods: Nasopharyngeal samples from children aged <12 years who were admitted to Kilifi District Hospital during 2007–2010 with severe or very severe pneumonia and resided in the local demographic surveillance system were screened for influenza A, B, and C viruses by molecular methods. Outpatient children provided comparative data. Results: Of 2002 admissions, influenza A virus infection was diagnosed in 3.5% (71), influenza B virus infection, in 0.9% (19); and influenza C virus infection, in 0.8% (11 of 1404 tested). Four patients with influenza died. Among outpatients, 13 of 331 (3.9%) with acute respiratory infection and 1 of 196 without acute respiratory infection were influenza positive. The annual incidence of severe or very severe pneumonia, of influenza (any type), and of influenza A, was 1321, 60, and 43 cases per 100 000 <5 years of age, respectively. Peak occurrence was in quarters 3–4 each year, and approximately 50% of cases involved infants: temporal association with bacteremia was absent. Hypoxia was more frequent among pneumonia cases involving influenza (odds ratio, 1.78; 95% confidence interval, 1.04–1.96). Influenza A virus subtypes were seasonal H3N2 (57%), seasonal H1N1 (12%), and 2009 pandemic H1N1 (7%). Conclusions: The burden of influenza was small during 2007–2010 in this pediatric hospital in Kenya. Influenza A virus subtype H3N2 predominated, and 2009 pandemic influenza A virus subtype H1N1 had little impact

    Viruses disrupt functions of human lymphocytes. Effects of measles virus and influenza virus on lymphocyte-mediated killing and antibody production.

    Get PDF
    We present experimental data that offer, in part, a better understanding of the immunosuppression that accompanies measles virus infection. We note that measles virus "silently" infects human lymphocytes and that the infection does not alter lymphocyte survival in vitro. Yet such infected lymphocytes fail to generate natural killer (NK) cell activity or synthesize immunoglobulins (Ig). Thus, the presence of virus within lymphocytes impairs their specific immune functions in the absence of cytolysis. Influenza virus also infects human lymphocytes. In contrast to measles virus infection of resting lymphocytes in which viral antigen is rarely expressed, influenza virus infection of these cells yields viral antigens expressed in the cytoplasm and on the cell surface. Influenza virus-infected lymphocytes have normal NK cell activity but fail to synthesize IgG or IgM

    Influenza virus differentially activates mTORC1 and mTORC2 signaling to maximize late stage replication

    Get PDF
    <div><p>Influenza A virus usurps host signaling factors to regulate its replication. One example is mTOR, a cellular regulator of protein synthesis, growth and motility. While the role of mTORC1 in viral infection has been studied, the mechanisms that induce mTORC1 activation and the substrates regulated by mTORC1 during influenza virus infection have not been established. In addition, the role of mTORC2 during influenza virus infection remains unknown. Here we show that mTORC2 and PDPK1 differentially phosphorylate AKT upon influenza virus infection. PDPK1-mediated phoshorylation of AKT at a distinct site is required for mTORC1 activation by influenza virus. On the other hand, the viral NS1 protein promotes phosphorylation of AKT at a different site via mTORC2, which is an activity dispensable for mTORC1 stimulation but known to regulate apoptosis. Influenza virus HA protein and down-regulation of the mTORC1 inhibitor REDD1 by the virus M2 protein promote mTORC1 activity. Systematic phosphoproteomics analysis performed in cells lacking the mTORC2 component Rictor in the absence or presence of Torin, an inhibitor of both mTORC1 and mTORC2, revealed mTORC1-dependent substrates regulated during infection. Members of pathways that regulate mTORC1 or are regulated by mTORC1 were identified, including constituents of the translation machinery that once activated can promote translation. mTORC1 activation supports viral protein expression and replication. As mTORC1 activation is optimal midway through the virus life cycle, the observed effects on viral protein expression likely support the late stages of influenza virus replication when infected cells undergo significant stress.</p></div

    A20 deficiency in lung epithelial cells protects against influenza A virus infection

    Get PDF
    A20 negatively regulates multiple inflammatory signalling pathways. We here addressed the role of A20 in club cells (also known as Clara cells) of the bronchial epithelium in their response to influenza A virus infection. Club cells provide a niche for influenza virus replication, but little is known about the functions of these cells in antiviral immunity. Using airway epithelial cell-specific A20 knockout (A20(AEC-KO)) mice, we show that A20 in club cells critically controls innate immune responses upon TNF or double stranded RNA stimulation. Surprisingly, A20(AEC-KO) mice are better protected against influenza A virus challenge than their wild type littermates. This phenotype is not due to decreased viral replication. Instead host innate and adaptive immune responses and lung damage are reduced in A20(AEC-KO) mice. These attenuated responses correlate with a dampened cytotoxic T cell (CTL) response at later stages during infection, indicating that A20(AEC-KO) mice are better equipped to tolerate Influenza A virus infection. Expression of the chemokine CCL2 (also named MCP-1) is particularly suppressed in the lungs of A20(AEC-KO) mice during later stages of infection. When A20(AEC-KO) mice were treated with recombinant CCL2 the protective effect was abrogated demonstrating the crucial contribution of this chemokine to the protection of A20(AEC-KO) mice to Influenza A virus infection. Taken together, we propose a mechanism of action by which A20 expression in club cells controls inflammation and antiviral CTL responses in response to influenza virus infection

    Low dose influenza virus challenge in the ferret leads to increased virus shedding and greater sensitivity to oseltamivir

    Get PDF
    Ferrets are widely used to study human influenza virus infection. Their airway physiology and cell receptor distribution makes them ideal for the analysis of pathogenesis and virus transmission, and for testing the efficacy of anti-influenza interventions and vaccines. The 2009 pandemic influenza virus (H1N1pdm09) induces mild to moderate respiratory disease in infected ferrets, following inoculation with 106 plaque-forming units (pfu) of virus. We have demonstrated that reducing the challenge dose to 102 pfu delays the onset of clinical signs by 1 day, and results in a modest reduction in clinical signs, and a less rapid nasal cavity innate immune response. There was also a delay in virus production in the upper respiratory tract, this was up to 9-fold greater and virus shedding was prolonged. Progression of infection to the lower respiratory tract was not noticeably delayed by the reduction in virus challenge. A dose of 104 pfu gave an infection that was intermediate between those of the 106 pfu and 102 pfu doses. To address the hypothesis that using a more authentic low challenge dose would facilitate a more sensitive model for antiviral efficacy, we used the well-known neuraminidase inhibitor, oseltamivir. Oseltamivir-treated and untreated ferrets were challenged with high (106 pfu) and low (102 pfu) doses of influenza H1N1pdm09 virus. The low dose treated ferrets showed significant delays in innate immune response and virus shedding, delayed onset of pathological changes in the nasal cavity, and reduced pathological changes and viral RNA load in the lung, relative to untreated ferrets. Importantly, these observations were not seen in treated animals when the high dose challenge was used. In summary, low dose challenge gives a disease that more closely parallels the disease parameters of human influenza infection, and provides an improved pre-clinical model for the assessment of influenza therapeutics, and potentially, influenza vaccines

    Viral and host factors required for avian H5N1 influenza A virus replication in mammalian cells

    Get PDF
    Following the initial and sporadic emergence into humans of highly pathogenic avian H5N1 influenza A viruses in Hong Kong in 1997, we have come to realize the potential for avian influenza A viruses to be transmitted directly from birds to humans. Understanding the basic viral and cellular mechanisms that contribute to infection of mammalian species with avian influenza viruses is essential for developing prevention and control measures against possible future human pandemics. Multiple physical and functional cellular barriers can restrict influenza A virus infection in a new host species, including the cell membrane, the nuclear envelope, the nuclear environment, and innate antiviral responses. In this review, we summarize current knowledge on viral and host factors required for avian H5N1 influenza A viruses to successfully establish infections in mammalian cells. We focus on the molecular mechanisms underpinning mammalian host restrictions, as well as the adaptive mutations that are necessary for an avian influenza virus to overcome them. It is likely that many more viral and host determinants remain to be discovered, and future research in this area should provide novel and translational insights into the biology of influenza virus-host interactions

    Influenza Vaccination of young children or Antibody Immune Response and Protection after Inactivated Influenza Vaccine in Children – A Literature Review

    Get PDF
    Influenza virus infection is a major cause of morbidity and mortality in at risk populations. Children, especially under the age of two, are at an increased risk of complications associated with influenza virus infection. Evidence suggests that a single dose of influenza vaccine does not adequately protect children against circulating influenza virus. The Centers for Disease Control and Prevention’s (CDC) Advisory Committee on Immunizations Practices (ACIP) recommends two doses of influenza vaccine, spaced at least four weeks apart, before the beginning of the influenza season for children between the ages of 6 months through 8 years receiving influenza vaccine for the first time. The initial dose is thought to prime the immune system, and the second dose is thought to mount a protective antibody response. We conducted a systematic literature review to summarize current evidence from randomized controlled trials (RCTs) and observational studies that compared immunogenicity and vaccine effectiveness (VE) after one or two doses of influenza vaccine in children to evaluate the evidence basis for the CDC recommendations. The search identified 727 unique articles and 82 were screened in full text for eligibility. A total of 26 studies met inclusion criteria, 16 immunogenicity and 10 VE studies. Overall, the evidence demonstrates increased immunogenicity and VE after two doses of influenz

    Tinjauan Struktur Genetik Serta Tingkat Keganasan Virus Influenza H1n1

    Full text link
    Evaluation Structure of Genetic and Virulens Influenza Virus of H1N1. Influenza of H1N1 or Mexico Flu or Pig Influenza or of Pig Flu ( Swine Influenza or Pig Flu) representing disease of acute exhalation channel (severe) caused of virus and can be catching very fast. Influenza of H1N1 resulted from by type influenza virus type A of Orthomyxoviridae family. This Virus have the character of patogen at human being, poultry, horse, and pig. Virus of Orthomyxoviridae family is particle camouflage in form of circular or domed of length, representing RNA genom enchain single by 8 segment, and also have negative polarity. Influenza of A (H1N1) represent new strain of influenza virus of A which is human being infection. Influenza of A ( H1N1) differ from other influenza virus strain which during the time often human being infection and most human being don't have impenetrability to virus. Therefore the virus can easily disseminate from human being to human being. Infection happened to through air (cough, sneezing) or direct contact with object or patient which have terkontaminasi. Infection of the virus can happened swiftly especially at young people (age 10 - 45 year). Influenza symptom of A (H1N1) is fever, cough, headache, mialgia ( muscle pain in bone), joint pain in bone, bronchitis, head cold and is sometime accompanied with diarrhoea and puking. The symptom known as by Influenza-Like Illness (ILI) or of Flu-Like syndrome because looking like symptom of flu other bronchi infection or which is often experienced of by human being. Influenza of A (H1N1) difficult differentiated with other bronchi infection or flu if only pursuant to at disease symptom
    • …
    corecore