46,427 research outputs found

    Improving dbNSFP

    Get PDF
    IMPROVING dbNSFP Mingyao Lu, B.S. Advisory Professor: Xiaoming Liu, Ph.D. The analysis and interpretation of DNA variation are very important for the Whole Exome studies (WES). Genome research has focused on single nucleotide variants (SNVs). Since indels are as important as SNVs, especially indels in coding regions are often candidates of disease-causing variants, thus, it is necessary to expand the focus to include indel mutations. The goal of my project is to provide an automatic annotation pipeline to the WES based disease studies project by extending the dbNSFP with a tool for automated indel annotation and deleteriousness prediction. The current sequencing results typically include both SNVs and indels. Although there have been many available tools to integrate functional prediction/annotations for SNV effects, there are no such tools for indels to my knowledge. Therefore, the aim of this thesis was to add deleteriousness prediction scores to indel annotation based on gene models, including CADD, SIFT, and PROVEAN. All those scores can be calculated on-the-fly after installing resources locally. A Docker implementing the indel annotation and deleteriousness prediction has been developed and ready to be deployed from the cloud

    A universal method for automated gene mapping

    Get PDF
    Small insertions or deletions (InDels) constitute a ubiquituous class of sequence polymorphisms found in eukaryotic genomes. Here, we present an automated high-throughput genotyping method that relies on the detection of fragment-length polymorphisms (FLPs) caused by InDels. The protocol utilizes standard sequencers and genotyping software. We have established genome-wide FLP maps for both Caenorhabditis elegans and Drosophila melanogaster that facilitate genetic mapping with a minimum of manual input and at comparatively low cost

    Structural Analysis of Polarizing Indels Argues the Root of the Tree of Life is Near the Chloroflexi

    Get PDF
    Determining which branches of the tree of life have derived features narrows down the possible location of the root. Currently the polarization of indels done by Lake _et al_.^1-5^ and the polarizing transitions of Cavalier-Smith^6^ arrive at contradictory positions for the root of the tree. We have analyzed the sequence based indel arguments using protein structure wherever possible. Structure strongly supports some of the polarizations, but in other indels it argues for a different conclusion. We conclude that there is no contradiction between Lake _et al_. and Cavalier-Smith; the root of the tree of life must be near the Chloroflexi.
&#xa

    Kevlar: A Mapping-Free Framework for Accurate Discovery of De Novo Variants.

    Get PDF
    De novo genetic variants are an important source of causative variation in complex genetic disorders. Many methods for variant discovery rely on mapping reads to a reference genome, detecting numerous inherited variants irrelevant to the phenotype of interest. To distinguish between inherited and de novo variation, sequencing of families (parents and siblings) is commonly pursued. However, standard mapping-based approaches tend to have a high false-discovery rate for de novo variant prediction. Kevlar is a mapping-free method for de novo variant discovery, based on direct comparison of sequences between related individuals. Kevlar identifies high-abundance k-mers unique to the individual of interest. Reads containing these k-mers are partitioned into disjoint sets by shared k-mer content for variant calling, and preliminary variant predictions are sorted using a probabilistic score. We evaluated Kevlar on simulated and real datasets, demonstrating its ability to detect both de novo single-nucleotide variants and indels with high accuracy

    Global Alignment of Molecular Sequences via Ancestral State Reconstruction

    Get PDF
    Molecular phylogenetic techniques do not generally account for such common evolutionary events as site insertions and deletions (known as indels). Instead tree building algorithms and ancestral state inference procedures typically rely on substitution-only models of sequence evolution. In practice these methods are extended beyond this simplified setting with the use of heuristics that produce global alignments of the input sequences--an important problem which has no rigorous model-based solution. In this paper we consider a new version of the multiple sequence alignment in the context of stochastic indel models. More precisely, we introduce the following {\em trace reconstruction problem on a tree} (TRPT): a binary sequence is broadcast through a tree channel where we allow substitutions, deletions, and insertions; we seek to reconstruct the original sequence from the sequences received at the leaves of the tree. We give a recursive procedure for this problem with strong reconstruction guarantees at low mutation rates, providing also an alignment of the sequences at the leaves of the tree. The TRPT problem without indels has been studied in previous work (Mossel 2004, Daskalakis et al. 2006) as a bootstrapping step towards obtaining optimal phylogenetic reconstruction methods. The present work sets up a framework for extending these works to evolutionary models with indels

    SInC: An accurate and fast error-model based simulator for SNPs, Indels and CNVs coupled with a read generator for short-read sequence data

    Get PDF
    We report SInC (SNV, Indel and CNV) simulator and read generator, an open-source tool capable of simulating biological variants taking into account a platform-specific error model. SInC is capable of simulating and generating single- and paired-end reads with user-defined insert size with high efficiency compared to the other existing tools. SInC, due to its multi-threaded capability during read generation, has a low time footprint. SInC is currently optimised to work in limited infrastructure setup and can efficiently exploit the commonly used quad-core desktop architecture to simulate short sequence reads with deep coverage for large genomes. Sinc can be downloaded from https://sourceforge.net/projects/sincsimulator/

    Towards Better Understanding of Artifacts in Variant Calling from High-Coverage Samples

    Full text link
    Motivation: Whole-genome high-coverage sequencing has been widely used for personal and cancer genomics as well as in various research areas. However, in the lack of an unbiased whole-genome truth set, the global error rate of variant calls and the leading causal artifacts still remain unclear even given the great efforts in the evaluation of variant calling methods. Results: We made ten SNP and INDEL call sets with two read mappers and five variant callers, both on a haploid human genome and a diploid genome at a similar coverage. By investigating false heterozygous calls in the haploid genome, we identified the erroneous realignment in low-complexity regions and the incomplete reference genome with respect to the sample as the two major sources of errors, which press for continued improvements in these two areas. We estimated that the error rate of raw genotype calls is as high as 1 in 10-15kb, but the error rate of post-filtered calls is reduced to 1 in 100-200kb without significant compromise on the sensitivity. Availability: BWA-MEM alignment: http://bit.ly/1g8XqRt; Scripts: https://github.com/lh3/varcmp; Additional data: https://figshare.com/articles/Towards_better_understanding_of_artifacts_in_variating_calling_from_high_coverage_samples/981073Comment: Published versio
    • …
    corecore