1,114,390 research outputs found

    The Immune System

    Get PDF
    Modern biotherapy has been in use for some 30 years. The first types of biotherapy were nonspecific stimulators of the immune response, but advances in genetic engineering are allowing the mass production of pure biological products which are now being tested as pharmaceutical agents. Biotherapy connotes the administration of products (1) that are coded by the mammalian genome; (2) that modify the expression of mammalian genes; or (3) that stimulate the immune system. In this chapter the discussion of the immune system will be limited primarily to topics relevant to cancer or autoimmune diseases. Because understanding the new biological agents requires an understanding of both the immune response and the molecular basis of oncogenesis, this chapter first presents a summary of the structure and function of the immune system. Following a discussion of immune responses, and the cells involved in these responses, will be a discussion on the current concepts of oncogenesis, particularly oncogenes and growth factors. Because research efforts are beginning to identify many biological proteins as having a role in autoimmune and other diseases, a brief introduction to autoimmune diseases is also included at the end of the chapter

    PlGF, immune system and hypertension

    Get PDF
    The huge diffusion of hypertension and its associated complications has a significant impact on public health [1]. However, despite the high prevalence of essential hypertension and many efforts of research, the basic pathophysiological causes remain puzzling

    Interaction between Cannabinoid System and Toll-Like Receptors Controls Inflammation

    Get PDF
    Since the discovery of the endocannabinoid system consisting of cannabinoid receptors, endogenous ligands, and biosynthetic and metabolizing enzymes, interest has been renewed in investigating the promise of cannabinoids as therapeutic agents. Abundant evidence indicates that cannabinoids modulate immune responses. An inflammatory response is triggered when innate immune cells receive a danger signal provided by pathogen- or damage-associated molecular patterns engaging pattern-recognition receptors. Toll-like receptor family members are prominent pattern-recognition receptors expressed on innate immune cells. Cannabinoids suppress Toll-like receptor-mediated inflammatory responses. However, the relationship between the endocannabinoid system and innate immune system may not be one-sided. Innate immune cells express cannabinoid receptors and produce endogenous cannabinoids. Hence, innate immune cells may play a role in regulating endocannabinoid homeostasis, and, in turn, the endocannabinoid system modulates local inflammatory responses. Studies designed to probe the interaction between the innate immune system and the endocannabinoid system may identify new potential molecular targets in developing therapeutic strategies for chronic inflammatory diseases. This review discusses the endocannabinoid system and Toll-like receptor family and evaluates the interaction between them

    The Immune System: the ultimate fractionated cyber-physical system

    Full text link
    In this little vision paper we analyze the human immune system from a computer science point of view with the aim of understanding the architecture and features that allow robust, effective behavior to emerge from local sensing and actions. We then recall the notion of fractionated cyber-physical systems, and compare and contrast this to the immune system. We conclude with some challenges.Comment: In Proceedings Festschrift for Dave Schmidt, arXiv:1309.455

    The avian lung-associated immune system

    Get PDF
    The lung is a major target organ for numerous viral and bacterial diseases of poultry. To control this constant threat birds have developed a highly organized lung-associated immune system. In this review the basic features of this system are described and their functional properties discussed. Most prominent in the avian lung is the bronchus-associated lymphoid tissue (BALT) which is located at the junctions between the primary bronchus and the caudal secondary bronchi. BALT nodules are absent in newly hatched birds, but gradually developed into the mature structures found from 6–8 weeks onwards. They are organized into distinct B and T cell areas, frequently comprise germinal centres and are covered by a characteristic follicle-associated epithelium. The interstitial tissue of the parabronchial walls harbours large numbers of tissue macrophages and lymphocytes which are scattered throughout tissue. A striking feature of the avian lung is the low number of macrophages on the respiratory surface under non-inflammatory conditions. Stimulation of the lung by live bacteria but not by a variety of bacterial products elicits a significant efflux of activated macrophages and, depending on the pathogen, of heterophils. In addition to the cellular components humoral defence mechanisms are found on the lung surface including secretory IgA. The compartmentalisation of the immune system in the avian lung into BALT and non BALTregions should be taken into account in studies on the host-pathogen interaction since these structures may have distinct functional properties during an immune response
    • …
    corecore