539,702 research outputs found

    Image Fusion With Cosparse Analysis Operator

    Full text link
    The paper addresses the image fusion problem, where multiple images captured with different focus distances are to be combined into a higher quality all-in-focus image. Most current approaches for image fusion strongly rely on the unrealistic noise-free assumption used during the image acquisition, and then yield limited robustness in fusion processing. In our approach, we formulate the multi-focus image fusion problem in terms of an analysis sparse model, and simultaneously perform the restoration and fusion of multi-focus images. Based on this model, we propose an analysis operator learning, and define a novel fusion function to generate an all-in-focus image. Experimental evaluations confirm the effectiveness of the proposed fusion approach both visually and quantitatively, and show that our approach outperforms state-of-the-art fusion methods.Comment: 12 pages, 4 figures, 1 table, Submitted to IEEE Signal Processing Letters on December 201

    A Novel Metric Approach Evaluation For The Spatial Enhancement Of Pan-Sharpened Images

    Full text link
    Various and different methods can be used to produce high-resolution multispectral images from high-resolution panchromatic image (PAN) and low-resolution multispectral images (MS), mostly on the pixel level. The Quality of image fusion is an essential determinant of the value of processing images fusion for many applications. Spatial and spectral qualities are the two important indexes that used to evaluate the quality of any fused image. However, the jury is still out of fused image's benefits if it compared with its original images. In addition, there is a lack of measures for assessing the objective quality of the spatial resolution for the fusion methods. So, an objective quality of the spatial resolution assessment for fusion images is required. Therefore, this paper describes a new approach proposed to estimate the spatial resolution improve by High Past Division Index (HPDI) upon calculating the spatial-frequency of the edge regions of the image and it deals with a comparison of various analytical techniques for evaluating the Spatial quality, and estimating the colour distortion added by image fusion including: MG, SG, FCC, SD, En, SNR, CC and NRMSE. In addition, this paper devotes to concentrate on the comparison of various image fusion techniques based on pixel and feature fusion technique.Comment: arXiv admin note: substantial text overlap with arXiv:1110.497

    Fusing image representations for classification using support vector machines

    Full text link
    In order to improve classification accuracy different image representations are usually combined. This can be done by using two different fusing schemes. In feature level fusion schemes, image representations are combined before the classification process. In classifier fusion, the decisions taken separately based on individual representations are fused to make a decision. In this paper the main methods derived for both strategies are evaluated. Our experimental results show that classifier fusion performs better. Specifically Bayes belief integration is the best performing strategy for image classification task.Comment: Image and Vision Computing New Zealand, 2009. IVCNZ '09. 24th International Conference, Wellington : Nouvelle-Z\'elande (2009
    corecore