445,483 research outputs found

    The stages of the peptic hydrolysis of egg albumin

    Get PDF
    1. Most of the products of the peptic hydrolysis of albumin, about 85 per cent of the total N, are primary in the sense that they arise directly from the protein molecule, and undergo no further hydrolysis. 2. A slow secondary hydrolysis, involving about 15 per cent of the total N, occurs in the proteose and simpler fractions primarily split off. 3. Acid metaprotein in peptic hydrolysis arises as a result of the action of add. It is not an essential stage in the hydrolysis of undenatured albumin. 4. Acid metaprotein is hydrolyzed by pepsin more slowly under comparable conditions than undenatured albumin

    Enzymatic Hydrolysis of Porang by Streptomyces Violascens BF 3.10 Mannanase for the Production of Mannooligosaccharides

    Full text link
    Porang (Amorphophallus muelleri Blume) is an indigenous Indonesian plant containing high hemicellulose as a source of glucomannan. An alternative way to produce a good quality of mannooligosaccharides was through hydrolysis of glucomannan by endo-β mannnase from actynomicetes. Based on 16S rRNA analysis, BF 3.10 isolate, isolated from Bukit Duabelas National Park soil, Jambi was identified as Streptomyces violascens BF 3.10. Reducing sugar was analyzed by dinitrosalicylic acid methods. The highest reducing sugar was achieved at the 72 hours of incubation. Mannanase of isolate BF 3.10 had the highest activity at pH 6 and temperature of 70 °C with enzyme activity of 16.38 U/mL and was stable at 4 °C for 48 h. During 5-hour of hydrolysis with substrate concentration of 0.25%, 0.5%, and 1% porang glucomannan dissolved in 10 mL enzyme, mannooligosaccharides were produced with the degree of polymerization of 2-3. Visualization of the products by using thin layer chromatography (TLC) and high performance liquid chromatography (HPLC) methods showed that mannooligosaccharides produced comprised of glucose, mannobiose, mannotriose, and mannotetraose. The degree of polymerization and the simple sugars produced indicated that mannanase produced by S. violascens actively catalyzed the hydrolysis of 1.4-β-D-mannoside linkage from β-1.4-mannan backbone, that eventually produced simple sugars of mannooligosaccharides

    A study of the enzymatic hydrolysis of fish frames using model systems

    Get PDF
    A model system was employed to study the operating conditions and primary parameters of enzymic hydrolysis of cod proteins. Pancreatin, papain, and bromelain were used to hydrolyse minced cod fillets under controlled conditions and with the rate of hydrolysis being continually monitored via both the pH-stat and TNBS method. The two methods were compared and evaluated. The rate of protein solubilisation was plotted against the degree of hydrolysis (DH). Dry fish protein hydrolysate (FPH) powders having short, medium and high degrees of hydrolysis (DH of approximately 8%, 11% and 16% respectively) were produced and analysed for their molecular weight distribution, using size exclusion chromatography. Almost complete protein solubilisation (75 g soluble protein per kg hydrolysis solution) could be achieved within an hour, at 40°C, at 1% enzyme/substrate ratio (w/w) with papain and bromelain. The pH-stat was found capable of continuously following the rate of hydrolysis but only at low DH. The TNBS could be accurately used even at high DH to estimate the percentage of the peptide bonds cleaved, but required chemical analysis of withdrawn samples

    Modeling the hydrolysis of perfluorinated compounds containing carboxylic and phosphoric acid ester functions, alkyl iodides, and sulfonamide groups

    Get PDF
    Temperature dependent rate constants were estimated for the acid- and base-catalyzed and neutral hydrolysis reactions of perfluorinated telomer acrylates (FTAcrs) and phosphate esters (FTPEs), and the SN1 and SN2 hydrolysis reactions of fluorotelomer iodides (FTIs). Under some environmental conditions, hydrolysis of monomeric FTAcrs could be rapid (half-lives of several years in marine systems and as low as several days in some landfills) and represent a dominant portion of their overall degradation. Abiotic hydrolysis of monomeric FTAcrs may be a significant contributor to current environmental loadings of fluorotelomer alcohols (FTOHs) and perfluoroalkyl carboxylic acids (PFCAs). Polymeric FTAcrs are expected to be hydrolyzed more slowly, with estimated half-lives in soil and natural waters ranging between several centuries to several millenia absent additional surface area limitations on reactivity. Poor agreement was found between the limited experimental data on FTPE hydrolysis and computational estimates, requiring more detailed experimental data before any further modeling can occur on these compounds or their perfluoroalkyl sulfonamidoethanol phosphate ester (PFSamPE) analogs. FTIs are expected to have hydrolytic half-lives of about 130 days in most natural waters, suggesting they may be contributing to substantial FTOH and PFCA inputs in aquatic systems. Perfluoroalkyl sulfonamides (PFSams) appear unlikely to undergo abiotic hydrolysis at the S-N, C-S, or N-C linkages under environmentally relevant conditions, although potentially facile S-N hydrolysis via intramolecular catalysis by ethanol and acetic acid amide substituents warrants further investigation

    Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils

    Get PDF
    Fluorescein diacetate (FDA) hydrolysis is widely accepted as an accurate and simple method for measuring total microbial activity in a range of environmental samples, including soils. Colourless fluorescein diacetate is hydrolysed by both free and membrane bound enzymes, releasing a coloured end product fluorescein which can be measured by spectrophotometry. The current method for measuring FDA hydrolysis in soils is limited in its application. FDA activity was very low in sandy and clayey soils. The low activity observed for these soil types was made difficult to measure by the original authors choice of solvent for terminating the hydrolysis reaction. Acetone (50% v/v) was found to be most efficient at stopping the hydrolysis reaction. During this study acetone (50% v/v) was found to cause a decrease of approximately 37% in the absorbance of fluorescein produced by the soil samples measured. Although this colour loss is independent of initial fluorescein concentration, it makes the measurement of FDA hydrolytic activity extremely difficult in soils with low microbial activity i.e. sandy and/or clayey soils. Chloroform/methanol (2:1 v/v) was found to successfully stop the hydrolysis reaction for up to 50 min in a range of soil samples without causing the loss of colour observed with acetone. By changing the solvent used for terminating the hydrolysis reaction, low activity soils could be measured successfully. Other parameters of the hydrolysis reaction were optimised for the measurement of soil samples including effect of pH. optimum temperature of incubation, amount of soil, time of incubation, amount of substrate and preparation of suitable standards. A new, more sensitive method is proposed adapted from the original method, which provides a more accurate determination of FDA hydrolysis in a wide range of soils

    High pressure pre-treatments promote higher rate and degree of enzymatic hydrolysis of cellulose

    Get PDF
    The effect of high pressure (HP) pre-treatments on the subsequent enzymatic hydrolysis of cellulose from bleached kraft Eucalyptus globulus pulp by cellulase from Tricoderma viride was evaluated. Pressure pre-treatments of 300 and 400 MPa during 5–45 min, lead to both an increased rate and degree of hydrolysis, reaching values ranging from 1.5- to 1.9-fold, quantified by the formation of reducing sugars. Both the pressure and time under pressure influenced the enzymatic hydrosability of the cellulosic pulps, with the former being more important. The results indicate that the pressure pre-treatments promoted an increased accessibility of cellulose towards cellulase in the cell wall. The results obtained open promising possibilities, to contribute to overcome conventional limitations of enzymatic cellulose hydrolysis for the production of fermentable glucose, for the production of second generation bioethanol and chemicals by enhancement of both rate and yield of hydrolysis. The results are also of interest for the preparation of “pressure engineered” celullose with incremented tailored hydrolysis patterns

    The hydrolysis of N-benzoyl-L-argininamide by crystalline trypsin

    Get PDF
    A reinvestigation of the kinetics of hydrolysis of N-benzoyl-n-argininamide by crystalline trypsin has led to the conclusion that the hydrolysis products enter into the over-all reaction as inhibitors

    Impacts of microalgae pre-treatments for improved anaerobic digestion: Thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis

    Get PDF
    Anaerobic digestion (AD) of microalgae is primarily inhibited by the chemical composition of their cell walls containing biopolymers able to resist bacterial degradation. Adoption of pre-treatments such as thermal, thermal hydrolysis, ultrasound and enzymatic hydrolysis have the potential to remove these inhibitory compounds and enhance biogas yields by degrading the cell wall, and releasing the intracellular algogenic organic matter (AOM). This work investigated the effect of four pre-treatments on three microalgae species, and their impact on the quantity of soluble biomass released in the media and thus on the digestion process yields. The analysis of the composition of the soluble COD released and of the TEM images of the cells showed two main degradation actions associated with the processes: (1) cell wall damage with the release of intracellular AOM (thermal, thermal hydrolysis and ultrasound) and (2) degradation of the cell wall constituents with the release of intracellular AOM and the solubilisation of the cell wall biopolymers (enzymatic hydrolysis). As a result of this, enzymatic hydrolysis showed the greatest biogas yield increments (>270%) followed by thermal hydrolysis (60–100%) and ultrasounds (30–60%)
    corecore