628,254 research outputs found

    Growth of bifidobacteria in mammalian milk

    Get PDF
    Microbial colonization of the mammalian intestine begins at birth, when from a sterile state a newborn infant is exposed to an external environment rich in various bacterial species. An important group of intestinal bacteria comprises bifidobacteria. Bifidobacteria represent major intestinal microbiota during the breast-feeding period. Animal milk contains all crucial nutrients for babies’ intestinal microflora. The aim of our work was to test the influence of different mammalian milk on the growth of bifidobacteria. The growth of seven strains of bifidobacteria in human milk, the colostrum of swine, cow’s milk, sheep’s milk, and rabbit’s milk was tested. Good growth accompanied by the production of lactic acid was observed not only in human milk, but also in the other kinds of milk in all three strains of Bifidobacterium bifidum of different origin. Human milk selectively supported the production of lactic acid of human bifidobacterial isolates, especially the Bifidobacterium bifidum species. The promotion of bifidobacteria by milk is species-specific. Human milk contains a key factor for the growth of specific species or strains of human-origin bifidobacteria compared to other kinds of milk. In contrast, some components (maybe lysozyme) of human milk inhibited the growth of Bifidobacterium animalis. Animal-origin strains of bifidobacteria were not able to significantly grow even in milk of animal origin, with the exception of B. animalis subsp. lactis 1,2, which slightly grew in sheep’s milk

    The Composition of Human Milk and Infant Faecal Microbiota Over the First Three Months of Life: A Pilot Study

    Get PDF
    peer-reviewedHuman milk contains a diverse array of bioactives and is also a source of bacteria for the developing infant gut. The aim of this study was to characterize the bacterial communities in human milk and infant faeces over the first 3 months of life, in 10 mother-infant pairs. The presence of viable Bifidobacterium and Lactobacillus in human milk was also evaluated. MiSeq sequencing revealed a large diversity of the human milk microbiota, identifying over 207 bacterial genera in milk samples. The phyla Proteobacteria and Firmicutes and the genera Pseudomonas, Staphylococcus and Streptococcus were the predominant bacterial groups. A core of 12 genera represented 81% of the microbiota relative abundance in milk samples at week 1, 3 and 6, decreasing to 73% at week 12. Genera shared between infant faeces and human milk samples accounted for 70–88% of the total relative abundance in infant faecal samples, supporting the hypothesis of vertical transfer of bacteria from milk to the infant gut. In addition, identical strains of Bifidobacterium breve and Lactobacillus plantarum were isolated from the milk and faeces of one mother-infant pair. Vertical transfer of bacteria via breastfeeding may contribute to the initial establishment of the microbiota in the developing infant intestine

    Marketing Mothers\u27 Milk: The Commodification of Breastfeeding and the New Markets for Breast Milk and Infant Formula

    Get PDF
    Today, breastfeeding, human breast milk, and its substitute, infant formula, are commodities. Mothers\u27 milk is marketed both literally and figuratively, as a good for sale, a normative behavior, and a cure for much of what ails twenty-first century America. Like previous exploitations of women\u27s bodies, including their eggs and uteruses, the idea that human milk is a valuable good that can be given away, traded in a market, or subjected to scientific experimentation raises fundamental moral and legal questions. This Article examines the marketing of breastfeeding, the emerging markets in human milk, and the growing market in infant formula through the lenses of bioethics, market analysis, and the commodification critique. This Article also examines the unique role of the medical profession in shaping the markets in human milk and infant formula

    Systematic review of fatty acid composition of human milk from mothers of preterm compared to full-term infants

    Get PDF
    Background: Fatty acid composition of human milk serves as guidance for the composition of infant formulae. The aim of the study was to systematically review data on the fatty acid composition of human milk of mothers of preterm compared to full-term infants. Methods: An electronic literature search was performed in English (Medline and Medscape) and German (SpringerLink) databases and via the Google utility. Fatty acid compositional data for preterm and fullterm human milk were converted to differences between means and 95% confidence intervals. Results: We identified five relevant studies publishing direct comparison of fatty acid composition of preterm versus full-term human milk. There were no significant differences between the values of the principal saturated and monounsaturated fatty acids. In three independent studies covering three different time points of lactation, however, docosahexaenoic acid (DHA) values were significantly higher in milk of mothers of preterm as compared to those of full-term infants, with an extent of difference considered nutritionally relevant. Conclusion: Higher DHA values in preterm than in full-term human milk underlines the importance of using own mother's milk for feeding preterm babies and raises the question whether DHA contents in preterm formulae should be higher than in formulae for full-term infants. Copyright (c) 2008 S. Karger AG, Basel

    A MALDI-TOF MS approach for mammalian, human, and formula milks’ profiling

    Get PDF
    Human milk composition is dynamic, and substitute formulae are intended to mimic its protein content. The purpose of this study was to investigate the potentiality of matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS), followed by multivariate data analyses as a tool to analyze the peptide profiles of mammalian, human, and formula milks. Breast milk samples from women at different lactation stages (2 (n = 5), 30 (n = 6), 60 (n = 5), and 90 (n = 4) days postpartum), and milk from donkeys (n = 4), cows (n = 4), buffaloes (n = 7), goats (n = 4), ewes (n = 5), and camels (n = 2) were collected. Different brands (n = 4) of infant formulae were also analyzed. Protein content (<30 kDa) was analyzed by MS, and data were exported for statistical elaborations. The mass spectra for each milk closely clustered together, whereas different milk samples resulted in well-separated mass spectra. Human samples formed a cluster in which colostrum constituted a well-defined subcluster. None of the milk formulae correlated with animal or human milk, although they were specifically characterized and correlated well with each other. These findings propose MALDI-TOF MS milk profiling as an analytical tool to discriminate, in a blinded way, different milk types. As each formula has a distinct specificity, shifting a baby from one to another formula implies a specific proteomic exposure. These profiles may assist in milk proteomics for easiness of use and minimization of costs, suggesting that the MALDI-TOF MS pipelines may be useful for not only milk adulteration assessments but also for the characterization of banked milk specimens in pediatric clinical settings

    A review of the immunomodulating components of maternal breast milk and protection against necrotizing enterocolitis

    Get PDF
    Breast milk contains immunomodulating components that are beneficial to newborns during maturation of their immune system. Human breast milk composition is influenced by an infant\u27s gestational and chronological age, lactation stage, and the mother and infant\u27s health status. Major immunologic components in human milk, such as secretory immunoglobulin A (IgA) and growth factors, have a known role in regulating gut barrier integrity and microbial colonization, which therefore protect against the development of a life-threatening gastrointestinal illness affecting newborn infants called necrotizing enterocolitis (NEC). Breast milk is a known protective factor in the prevention of NEC when compared with feeding with commercial formula. Breast milk supplements infants with human milk oligosaccharides, leukocytes, cytokines, nitric oxide, and growth factors that attenuate inflammatory responses and provide immunological defenses to reduce the incidence of NEC. This article aims to review the variety of immunomodulating components in breast milk that protect the infant from the development of NEC
    • …
    corecore