423,153 research outputs found
Collaborative Hierarchical Sparse Modeling
Sparse modeling is a powerful framework for data analysis and processing.
Traditionally, encoding in this framework is done by solving an l_1-regularized
linear regression problem, usually called Lasso. In this work we first combine
the sparsity-inducing property of the Lasso model, at the individual feature
level, with the block-sparsity property of the group Lasso model, where sparse
groups of features are jointly encoded, obtaining a sparsity pattern
hierarchically structured. This results in the hierarchical Lasso, which shows
important practical modeling advantages. We then extend this approach to the
collaborative case, where a set of simultaneously coded signals share the same
sparsity pattern at the higher (group) level but not necessarily at the lower
one. Signals then share the same active groups, or classes, but not necessarily
the same active set. This is very well suited for applications such as source
separation. An efficient optimization procedure, which guarantees convergence
to the global optimum, is developed for these new models. The underlying
presentation of the new framework and optimization approach is complemented
with experimental examples and preliminary theoretical results.Comment: To appear in CISS 201
Bayesian Hierarchical Modelling for Tailoring Metric Thresholds
Software is highly contextual. While there are cross-cutting `global'
lessons, individual software projects exhibit many `local' properties. This
data heterogeneity makes drawing local conclusions from global data dangerous.
A key research challenge is to construct locally accurate prediction models
that are informed by global characteristics and data volumes. Previous work has
tackled this problem using clustering and transfer learning approaches, which
identify locally similar characteristics. This paper applies a simpler approach
known as Bayesian hierarchical modeling. We show that hierarchical modeling
supports cross-project comparisons, while preserving local context. To
demonstrate the approach, we conduct a conceptual replication of an existing
study on setting software metrics thresholds. Our emerging results show our
hierarchical model reduces model prediction error compared to a global approach
by up to 50%.Comment: Short paper, published at MSR '18: 15th International Conference on
Mining Software Repositories May 28--29, 2018, Gothenburg, Swede
- …