1,393,182 research outputs found
Hierarchical Models as Marginals of Hierarchical Models
We investigate the representation of hierarchical models in terms of
marginals of other hierarchical models with smaller interactions. We focus on
binary variables and marginals of pairwise interaction models whose hidden
variables are conditionally independent given the visible variables. In this
case the problem is equivalent to the representation of linear subspaces of
polynomials by feedforward neural networks with soft-plus computational units.
We show that every hidden variable can freely model multiple interactions among
the visible variables, which allows us to generalize and improve previous
results. In particular, we show that a restricted Boltzmann machine with less
than hidden binary variables can approximate
every distribution of visible binary variables arbitrarily well, compared
to from the best previously known result.Comment: 18 pages, 4 figures, 2 tables, WUPES'1
Distributed Hierarchical SVD in the Hierarchical Tucker Format
We consider tensors in the Hierarchical Tucker format and suppose the tensor
data to be distributed among several compute nodes. We assume the compute nodes
to be in a one-to-one correspondence with the nodes of the Hierarchical Tucker
format such that connected nodes can communicate with each other. An
appropriate tree structure in the Hierarchical Tucker format then allows for
the parallelization of basic arithmetic operations between tensors with a
parallel runtime which grows like , where is the tensor dimension.
We introduce parallel algorithms for several tensor operations, some of which
can be applied to solve linear equations directly in the
Hierarchical Tucker format using iterative methods like conjugate gradients or
multigrid. We present weak scaling studies, which provide evidence that the
runtime of our algorithms indeed grows like . Furthermore, we present
numerical experiments in which we apply our algorithms to solve a
parameter-dependent diffusion equation in the Hierarchical Tucker format by
means of a multigrid algorithm
Methods of Hierarchical Clustering
We survey agglomerative hierarchical clustering algorithms and discuss
efficient implementations that are available in R and other software
environments. We look at hierarchical self-organizing maps, and mixture models.
We review grid-based clustering, focusing on hierarchical density-based
approaches. Finally we describe a recently developed very efficient (linear
time) hierarchical clustering algorithm, which can also be viewed as a
hierarchical grid-based algorithm.Comment: 21 pages, 2 figures, 1 table, 69 reference
Hierarchical mutual information for the comparison of hierarchical community structures in complex networks
The quest for a quantitative characterization of community and modular
structure of complex networks produced a variety of methods and algorithms to
classify different networks. However, it is not clear if such methods provide
consistent, robust and meaningful results when considering hierarchies as a
whole. Part of the problem is the lack of a similarity measure for the
comparison of hierarchical community structures. In this work we give a
contribution by introducing the {\it hierarchical mutual information}, which is
a generalization of the traditional mutual information, and allows to compare
hierarchical partitions and hierarchical community structures. The {\it
normalized} version of the hierarchical mutual information should behave
analogously to the traditional normalized mutual information. Here, the correct
behavior of the hierarchical mutual information is corroborated on an extensive
battery of numerical experiments. The experiments are performed on artificial
hierarchies, and on the hierarchical community structure of artificial and
empirical networks. Furthermore, the experiments illustrate some of the
practical applications of the hierarchical mutual information. Namely, the
comparison of different community detection methods, and the study of the
consistency, robustness and temporal evolution of the hierarchical modular
structure of networks.Comment: 14 pages and 12 figure
- …