701,896 research outputs found

    NASA Lewis steady-state heat pipe code users manual

    Get PDF
    The NASA Lewis heat pipe code was developed to predict the performance of heat pipes in the steady state. The code can be used as a design tool on a personal computer or with a suitable calling routine, as a subroutine for a mainframe radiator code. A variety of wick structures, including a user input option, can be used. Heat pipes with multiple evaporators, condensers, and adiabatic sections in series and with wick structures that differ among sections can be modeled. Several working fluids can be chosen, including potassium, sodium, and lithium, for which monomer-dimer equilibrium is considered. The code incorporates a vapor flow algorithm that treats compressibility and axially varying heat input. This code facilitates the determination of heat pipe operating temperatures and heat pipe limits that may be encountered at the specified heat input and environment temperature. Data are input to the computer through a user-interactive input subroutine. Output, such as liquid and vapor pressures and temperatures, is printed at equally spaced axial positions along the pipe as determined by the user

    Multichamber controllable heat pipe

    Get PDF
    Valve throttles transfer of vapor between heat input surface and heat rejection surface of heat pipe to control rate of transfer of energy. Valve is operated by control signals which sense temperatures or pressures

    Computer integration of hydrodynamics equations for heat pipes

    Get PDF
    Program has five operational modes that provide user flexibility in answering crucial heat-pipe design questions. User specifies heat input and rejection distribution

    Lithium and potassium heat pipes for thermionic converters

    Get PDF
    A prototypic heat pipe system for an out-of-core thermionic reactor was built and tested. The emitter of the concentric thermionic converter consists of the condenser of a tungsten heat pipe utilizing a lithium working fluid. The evaporator section of the emitter heat pipe is radiation heated to simulate the thermal input from the nuclear reactor. The emitter heat pipe thermal transport is matched to the thermionic converter input requirement. The collector heat pipe of niobium, 1% zirconium alloy uses potassium as the working fluid. The thermionic collector is coupled to the heat pipe by a tapered conical joint designed to minimize the temperature drop. The collector heat flux matches the design requirements of the thermionic converter

    A study of start-up characteristics of a potassium heat pipe from the frozen state

    Get PDF
    The start up characteristics of a potassium heat pipe were studied both analytically and experimentally. Using the radiation heat transfer mode the heat pipe was tested in a vacuum chamber. The transition temperature calculated for potassium was then compared with the experimental results of the heat pipe with various heat inputs. These results show that the heat pipe was inactive until it reached the transition temperature. In addition, during the start up period, the evaporator experienced dry-out with a heat input smaller than the capillary limit calculated at the steady state. However, when the working fluid at the condensor was completely melted, the evaporation was rewetted without external aid. The start up period was significantly reduced with a large heat input

    Bubbles as tracers of heat input to cooling flows

    Get PDF
    We examine the distribution of injected energy in three-dimensional, adaptive-grid simulations of the heating of cooling flows. We show that less than 10 percent of the injected energy goes into bubbles. Consequently, the energy input from the nucleus is underestimated by a factor of order 6 when it is taken to be given by PVgamma/(gamma-1), where P and V are the pressure and volume of the bubble, and gamma the ratio of principal specific heats.Comment: Accepted for publication in MNRAS; 5 page

    Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 3: Energy Conversion subsystems and components. Part 2: Primary heat input systems and heat exchangers

    Get PDF
    Primary heat input systems and heat exchangers were evaluated for advanced energy conversion systems. Results are presented and discussed

    SPAN - Terminal sterilization process analysis program

    Get PDF
    Computer program, SPAN, measures the dry heat thermal sterilization process applied to a planetary capsule and calculates the time required for heat application, steady state conditions, and cooling. The program is based on the logarithmic survival of micro-organisms. Temperature profiles must be input on tape
    corecore