13,727 research outputs found
High Open-Circuit Voltages in Lead-Halide Perovskite Solar Cells - Experiment, Theory and Open Questions
One of the most significant features of lead-halide perovskites are their
ability to have comparably slow recombination despite the fact that these
materials are mostly processed from solution at room temperature. The slow
recombination allows achieving high open-circuit voltages when the lead-halide
perovskite layers are used in solar cells. This perspective discusses the state
of the art of our understanding and of experimental data with regard to
recombination and open-circuit voltages in lead-halide perovskites. A special
focus is put onto open questions that the community has to tackle to design
future photovoltaic and optoelectronic devices based on lead-halide perovskites
and other semiconductors with similar properties
Reduced Barrier for Ion Migration in Mixed-Halide Perovskites.
Halide alloying in metal halide perovskites is a useful tool for optoelectronic applications requiring a specific bandgap. However, mixed-halide perovskites show ion migration in the perovskite layer, leading to phase segregation and reducing the long-term stability of the devices. Here, we study the ion migration process in methylammonium-based mixed-halide perovskites with varying ratios of bromide to iodide. We find that the mixed-halide perovskites show two separate halide migration processes, in contrast to pure-phase perovskites, which show only a unique halide migration component. Compared to pure-halide perovskites, these processes have lower activation energies, facilitating ion migration in mixed versus pure-phase perovskites, and have a higher density of mobile ions. Under illumination, we find that the concentration of mobile halide ions is further increased and notice the emergence of a migration process involving methylammonium cations. Quantifying the ion migration processes in mixed-halide perovskites shines light on the key parameters allowing the design of bandgap-tunable perovskite solar cells with long-term stability
Recommended from our members
Rich Chemistry in Inorganic Halide Perovskite Nanostructures.
Halide perovskites have emerged as a class of promising semiconductor materials owing to their remarkable optoelectronic properties exhibiting in solar cells, light-emitting diodes, semiconductor lasers, etc. Inorganic halide perovskites are attracting increasing attention because of the higher stability toward moisture, light, and heat as compared with their organic-inorganic hybrid counterparts. In particular, inorganic halide perovskite nanomaterials provide controllable morphology, tunable optoelectronic properties, and improved quantum efficiency. Here, the development controlled synthesis of desired inorganic halide perovskite nanostructures by various chemical approaches is described. Utilizing these nanostructures as platforms, anion exchange chemistry for wide compositional and optical tunabilities is described, and the rich structural phase transition phenomenon and mechanism investigated systematically. Furthermore, these nanostructures and extracted knowledge are applied to design photonic, photovoltaic, and thermoelectric devices. Finally, future directions and challenges toward improvement of the optical, electrical, and optoelectronic properties, exploration of the anion and cation exchange kinetics, and alleviation of the stability and toxicity issues in inorganic lead based halide perovskites are discussed to provide an outlook on this promising field
Breakdown of the static picture of defect energetics in halide perovskites: the case of the Br vacancy in CsPbBr3
We consider the Br vacancy in CsPbBr3 as a prototype for the impact of
structural dynamics on defect energetics in halide perovskites (HaPs). Using
first-principles molecular dynamics based on density functional theory, we find
that the static picture of defect energetics breaks down; the energy of the Br
vacancy level is found to be intrinsically dynamic, oscillating by as much as 1
eV on the ps time scale at room temperature. These significant energy
fluctuations are correlated with the distance between the neighboring Pb atoms
across the vacancy and with the electrostatic potential at these Pb atomic
sites. We expect this unusually strong coupling of structural dynamics and
defect energetics to bear important implications for both experimental and
theoretical analysis of defect characteristics in HaPs. It may also hold
significant ramifications for carrier transport and defect tolerance in this
class of photovoltaic materials.Comment: 5 figures, 1 tabl
Anion Distribution, Structural Distortion, and Symmetry-Driven Optical Band Gap Bowing in Mixed Halide Cs2SnX6 Vacancy Ordered Double Perovskites.
Mixed anion compounds in the Fm3̅m vacancy ordered perovskite structure were synthesized and characterized experimentally and computationally with a focus on compounds where A = Cs+. Pure anion Cs2SnX6 compounds were formed with X = Cl, Br, and I using a room temperature solution phase method. Mixed anion compounds were formed as solid solutions of Cs2SnCl6 and Cs2SnBr6 and a second series from Cs2SnBr6 and Cs2SnI6. Single phase structures formed across the entirety of both composition series with no evidence of long-range anion ordering observed by diffraction. A distortion of the cubic A2BX6 structure was identified in which the spacing of the BX6 octahedra changes to accommodate the A site cation without reduction of overall symmetry. Optical band gap values varied with anion composition between 4.89 eV in Cs2SnCl6 to 1.35 eV in Cs2SnI6 but proved highly nonlinear with changes in composition. In mixed halide compounds, it was found that lower energy optical transitions appeared that were not present in the pure halide compounds, and this was attributed to lowering of the local symmetry within the tin halide octahedra. The electronic structure was characterized by photoemission spectroscopy, and Raman spectroscopy revealed vibrational modes in the mixed halide compounds that could be assigned to particular mixed halide octahedra. This analysis was used to determine the distribution of octahedra types in mixed anion compounds, which was found to be consistent with a near-random distribution of halide anions throughout the structure, although some deviations from random halide distribution were noted in mixed iodide-bromide compounds, where the larger iodide anions preferentially adopted trans configurations
- …