2,353 research outputs found
Recommended from our members
Highly Stable Luminous "snakes" from CsPbX3 Perovskite Nanocrystals Anchored on Amine-Coated Silica Nanowires
CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals (NCs) are known for their exceptional optoelectronic properties, yet the material's instability toward polar solvents, heat, or UV irradiation greatly limits its further applications. Herein, an efficient in situ growing strategy has been developed to give highly stable perovskite NC composites (abbreviated CsPbX3@CA-SiO2) by anchoring CsPbX3 NCs onto silica nanowires (NWs), which effectively depresses the optical degradation of their photoluminescence (PL) and enhances stability. The preparation of surface-functionalized serpentine silica NWs is realized by a sol-gel process involving hydrolysis of a mixture of tetraethyl orthosilicate (TEOS), 3-aminopropyltriethoxysilane (APTES), and trimethoxy(octadecyl)silane (TMODS) in a water/oil emulsion. The serpentine NWs are formed via an anisotropic growth with lengths up to 8 μm. The free amino groups are employed as surface ligands for growing perovskite NCs, yielding distributed monodisperse NCs (∼8 nm) around the NW matrix. The emission wavelength is tunable by simple variation of the halide compositions (CsPbX3, X = Cl, Br, or I), and the composites demonstrate a high photoluminescence quantum yield (PLQY 32-69%). Additionally, we have demonstrated the composites CsPbX3@CA-SiO2 can be self-woven to form a porous 3D hierarchical NWs membrane, giving rise to a superhydrophobic surface with hierarchical micro/nano structural features. The resulting composites exhibit high stability toward water, heat, and UV irradiation. This work elucidates an effective strategy to incorporate perovskite nanocrystals onto functional matrices as multifunctional stable light sources
Ruddlesden-Popper Phase in Two-Dimensional Inorganic Halide Perovskites: A Plausible Model and the Supporting Observations.
A Ruddlesden-Popper (RP) type structure is well-known in oxide perovskites and is related to many interesting properties such as superconductivity and ferroelectricity. However, the RP phase has not yet been discovered in inorganic halide perovskites. Here, we report the direct observation of unusual structure in two-dimensional CsPbBr3 nanosheets which could be interpreted as the RP phase based on model simulations. Structural details of the plausible RP domains and domain boundaries between the RP and conventional perovskite phases have been revealed on the atomic level using aberration-corrected scanning transmission electron microscopy. The finding marks a major advance toward future inorganic halide RP phase synthesis and theoretical modeling, as well as unraveling their structure-property relationship
Recommended from our members
Lead halide perovskite nanowires stabilized by block copolymers for Langmuir-Blodgett assembly
The rapid development of solar cells based on lead halide perovskites (LHPs) has prompted very active research activities in other closely-related fields. Colloidal nanostructures of such materials display superior optoelectronic properties. Especially, one-dimensional (1D) LHPs nanowires show anisotropic optical properties when they are highly oriented. However, the ionic nature makes them very sensitive to external environment, limiting their large scale practical applications. Here, we introduce an amphiphilic block copolymer, polystyrene-block-poly(4-vinylpyridine) (PS-P4VP), to chemically modify the surface of colloidal CsPbBr3 nanowires. The resulting core-shell nanowires show enhanced photoluminescent emission and good colloidal stability against water. Taking advantage of the stability enhancement, we further applied a modified Langmuir-Blodgett technique to assemble monolayers of highly aligned nanowires, and studied their anisotropic optical properties. [Figure not available: see fulltext.]
Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions
Over the past decade, tremendous progress has been achieved in the development of nanoscale semiconductor materials with a wide range of bandgaps by alloying different individual semiconductors. These materials include traditional II-VI and III-V semiconductors and their alloys, inorganic and hybrid perovskites, and the newly emerging 2D materials. One important common feature of these materials is that their nanoscale dimensions result in a large tolerance to lattice mismatches within a monolithic structure of varying composition or between the substrate and target material, which enables us to achieve almost arbitrary control of the variation of the alloy composition. As a result, the bandgaps of these alloys can be widely tuned without the detrimental defects that are often unavoidable in bulk materials, which have a much more limited tolerance to lattice mismatches. This class of nanomaterials could have a far-reaching impact on a wide range of photonic applications, including tunable lasers, solid-state lighting, artificial photosynthesis and new solar cells
All-Inorganic Metal Halide Perovskite Nanocrystals: Opportunities and Challenges.
The past decade has witnessed the growing interest in metal halide perovskites as driven by their promising applications in diverse fields. The low intrinsic stability of the early developed organic versions has however hampered their widespread applications. Very recently, all-inorganic perovskite nanocrystals have emerged as a new class of materials that hold great promise for the practical applications in solar cells, photodetectors, light-emitting diodes, and lasers, among others. In this Outlook, we first discuss the recent developments in the preparation, properties, and applications of all-inorganic metal halide perovskite nanocrystals, with a particular focus on CsPbX3, and then provide our view of current challenges and future directions in this emerging area. Our goal is to introduce the current status of this type of new materials to researchers from different areas and motivate them to explore all the potentials
High Seebeck coefficient and ultra-low lattice thermal conductivity in Cs2InAgCl6
The elastic, electronic and thermoelectric properties of indium-based
double-perovskite halide, Cs2InAgCl6 have been studied by first principles
study. The Cs2InAgCl6 is found to be elastically stable, ductile, anisotropic
and relatively low hard material. The calculated direct bandgap 3.67 eV by
TB-mBJ functional fairly agrees with the experimentally measured value 3.3 eV
but PBE functional underestimates the bandgap by 1.483 eV. The relaxation time
and lattice thermal conductivity have been calculated by using relaxation time
approximation (RTA) within the supercell approach. The lattice thermal
conductivity (\k{appa}l) is quite low (0.2 Wm-1K-1). The quite low phonon group
velocity in the large weighted phase space, and high anharmonicity (large
phonon scattering) are responsible for small \k{appa}l. The room temperature
Seebeck coefficient is 199 {\mu}VK-1. Such high Seebeck coefficient arises from
the combination of the flat conduction band and large bandgap. We obtain power
factors at 300K by using PBE and TB-mBJ potentials are ~29 and ~31 mWm-1K-2,
respectively and the corresponding thermoelectric figure of merit of Cs2BiAgCl6
are 0.71 and 0.72. However, the maximum ZT value obtained at 700K is ~0.74 by
TB-mBJ potential. The obtained results implies that Cs2InAgCl6 is a promising
material for thermoelectric device applications.Comment: 19 pages. arXiv admin note: text overlap with arXiv:1801.0370
- …