527,157 research outputs found

    Correlations between Growth Kinetics and Microstructure for Scales Formed by High-Temperature Oxidation of Pure Nickel. II. Growth Kinetics

    Get PDF
    The oxidation kinetics of high-purity nickel were studied between 500 and 1200°C, in pure oxygen at atmospheric pressure, for aûerage oxide-scale thicknesses of 1, 5, 10, and 30 μm. In the oûerall temperature range studied, a decrease in the parabolic rate constant kp with increasing scale thickness was observed. Depending on temperature and oxide-scale thickness, growth kinetics can be interpreted as a mixture of parabolic- and cubic-growth kinetics. Possible correlations between growth kinetics and microstructures of the oxide scales were inûestigated. From this set of experimental data, oxidation-kinetics models were tested. In particular, the effect of grain-boundary diffusion on NiO-growth kinetics was discussed. The correlations between growth kinetics and oxide microstructures appear to be more complex than usually reported

    Dynamical Self-assembly during Colloidal Droplet Evaporation Studied by in situ Small Angle X-ray Scattering

    Full text link
    The nucleation and growth kinetics of highly ordered nanocrystal superlattices during the evaporation of nanocrystal colloidal droplets was elucidated by in situ time resolved small-angle x-ray scattering. We demonstrated for the first time that evaporation kinetics can affect the dimensionality of the superlattices. The formation of two-dimensional nanocrystal superlattices at the liquid-air interface of the droplet has an exponential growth kinetics that originates from interface "crushing".Comment: 4 pages, 4 figure

    Dynamics of Ordering in Alloys with Modulated Phases

    Full text link
    This paper presents a theoretical model for studying the dynamics of ordering in alloys which exhibit modulated phases. The model is different from the standard time-dependent Ginzburg-Landau description of the evolution of a non-conserved order parameter and resembles the Swift-Hohenberg model. The early-stage growth kinetics is analyzed and compared to the Cahn-Hilliard theory of continuous ordering. The effects of non-linearities on the growth kinetics are discussed qualitatively and it is shown that the presence of an underlying elastic lattice introduces qualitatively new effects. A lattice Hamiltonian capable of describing these effects and suitable for carrying out simulations of the growth kinetics is also constructed.Comment: 18 pages, 3 figures (postscript files appended), Brandeis-BC9

    The kinetics of glucose limited growth by a marine yeast

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 1969The kinetics of glucose limited growth by a marine yeast, shown to be a Rhodotorula species, have been studied in a continuous culture apparatus. The saturation constant, in synthetic media, has been calculated to be 0.25 mg/l, on the assumption that saturation kinetics are followed, The maximum growth rate was determined in both synthetic media, and artificial sea water. On the basis of inhibition kinetics, the kinetic behavior of this yeast in the marine environment has been predicted. The effect of temperature on the maximum growth rate has been determined and, on the assumption of a similar effect on the saturation constant, the saturation constant has been postulated to be in agreement with similar values determined for other microorganisms.Abstract -- Introduction -- Materials and Methods -- Results -- Discussion -- Appendices -- Bibliograph

    Growth kinetics of circular liquid domains on vesicles by diffusion-controlled coalescence

    Full text link
    Motivated by recent experiments on multi-component membranes, the growth kinetics of domains on vesicles is theoretically studied. It is known that the steady-state rate of coalescence cannot be obtained by taking the long-time limit of the coalescence rate when the membrane is regarded as an infinite two-dimensional (2D) system. The steady-state rate of coalescence is obtained by explicitly taking into account the spherical vesicle shape. Using the expression of the 2D diffusion coefficient obtained in the limit of small domain size, an analytical expression for the domain growth kinetics is obtained when the circular shape is always maintained. For large domains, the growth kinetics is discussed by investigating the size dependence of the coalescence rate using the expression for the diffusion coefficient of arbitrary domain size.Comment: 16pages, 3 figure

    Mounding Instability and Incoherent Surface Kinetics

    Full text link
    Mounding instability in a conserved growth from vapor is analysed within the framework of adatom kinetics on the growing surface. The analysis shows that depending on the local structure on the surface, kinetics of adatoms may vary, leading to disjoint regions in the sense of a continuum description. This is manifested particularly under the conditions of instability. Mounds grow on these disjoint regions and their lateral growth is governed by the flux of adatoms hopping across the steps in the downward direction. Asymptotically ln(t) dependence is expected in 1+1- dimensions. Simulation results confirm the prediction. Growth in 2+1- dimensions is also discussed.Comment: 4 pages, 4 figure
    • …
    corecore