402,672 research outputs found
Grid Cells Form a Global Representation of Connected Environments.
The firing patterns of grid cells in medial entorhinal cortex (mEC) and associated brain areas form triangular arrays that tessellate the environment [1, 2] and maintain constant spatial offsets to each other between environments [3, 4]. These cells are thought to provide an efficient metric for navigation in large-scale space [5-8]. However, an accurate and universal metric requires grid cell firing patterns to uniformly cover the space to be navigated, in contrast to recent demonstrations that environmental features such as boundaries can distort [9-11] and fragment [12] grid patterns. To establish whether grid firing is determined by local environmental cues, or provides a coherent global representation, we recorded mEC grid cells in rats foraging in an environment containing two perceptually identical compartments connected via a corridor. During initial exposures to the multicompartment environment, grid firing patterns were dominated by local environmental cues, replicating between the two compartments. However, with prolonged experience, grid cell firing patterns formed a single, continuous representation that spanned both compartments. Thus, we provide the first evidence that in a complex environment, grid cell firing can form the coherent global pattern necessary for them to act as a metric capable of supporting large-scale spatial navigation
Large Scale Electronic Structure Calculations with Multigrid Acceleration
We have developed a set of techniques for performing large scale ab initio
calculations using multigrid accelerations and a real-space grid as a basis.
The multigrid methods permit efficient calculations on ill-conditioned systems
with long length scales or high energy cutoffs. The technique has been applied
to systems containing up to 100 atoms, including a highly elongated diamond
cell, an isolated C molecule, and a 32-atom cell of GaN with the Ga
d-states in valence. The method is well suited for implementation on both
vector and massively parallel architectures.Comment: 4 pages, 1 postscript figur
Development of filtered Euler–Euler two-phase model for circulating fluidised bed: High resolution simulation, formulation and a priori analyses
Euler–Euler two-phase model simulations are usually performed with mesh sizes larger than the smallscale structure size of gas–solid flows in industrial fluidised beds because of computational resource limitation. Thus, these simulations do not fully account for the particle segregation effect at the small scale and this causes poor prediction of bed hydrodynamics. An appropriate modelling approach accounting for the influence of unresolved structures needs to be proposed for practical simulations. For this purpose, computational grids are refined to a cell size of a few particle diameters to obtain mesh-independent results requiring up to 17 million cells in a 3D periodic circulating fluidised bed. These mesh-independent results are filtered by volume averaging and used to perform a priori analyses on the filtered phase balance equations. Results show that filtered momentum equations can be used for practical simulations but must take account of a drift velocity due to the sub-grid correlation between the local fluid velocity and the local particle volume fraction, and particle sub-grid stresses due to the filtering of the non-linear convection term. This paper proposes models for sub-grid drift velocity and particle sub-grid stresses and assesses these models by a priori tests
Multigrid calculation of three-dimensional viscous cascade flows
A 3-D code for viscous cascade flow prediction was developed. The space discretization uses a cell-centered scheme with eigenvalue scaling to weigh the artificial dissipation terms. Computational efficiency of a four stage Runge-Kutta scheme is enhanced by using variable coefficients, implicit residual smoothing, and a full multigrid method. The Baldwin-Lomax eddy viscosity model is used for turbulence closure. A zonal, nonperiodic grid is used to minimize mesh distortion in and downstream of the throat region. Applications are presented for an annular vane with and without end wall contouring, and for a large scale linear cascade. The calculation is validated by comparing with experiments and by studying grid dependency
Turbulence in the ICM from mergers, cool-core sloshing and jets: results from a new multi-scale filtering approach
We have designed a simple multi-scale method that identifies turbulent
motions in hydrodynamical grid simulations. The method does not assmume ant
a-priori coherence scale to distinguish laminar and turbulent flows. Instead,
the local mean velocity field around each cell is reconstructed with a
multi-scale filtering technique, yielding the maximum scale of turbulent eddies
by means of iterations. The method is robust, fast and easily applicable to any
grid simulation. We present here the application of this technique to the study
of spatial and spectral properties of turbulence in the intra cluster medium,
measuring turbulent diffusion and anisotropy of the turbulent velocity field
for a variety of driving mechanisms: a) accretion of matter in galaxy clusters
(simulated with ENZO); b) sloshing motions around cool-cores (simulated with
FLASH); c) jet outflows from active galactic nuclei, AGN (simulated with
FLASH). The turbulent velocities driven by matter accretion in galaxy clusters
are mostly tangential in the inner regions (inside the cluster virial radius)
and isotropic in regions close to the virial radius. The same is found for
turbulence excited by cool core sloshing, while the jet outflowing from AGN
drives mostly radial turbulence motions near its sonic point and beyond.
Turbulence leads to a diffusivity in the range =10^29-10^30 cm^2/s in the intra
cluster medium. On average, the energetically dominant mechanism of turbulence
driving in the intra cluster medium is represented by accretion of matter and
major mergers during clusters evolution.Comment: 19 pages, 20 figures. Astronomy and Astrophysics, in pres
Characterization of an Ionization Readout Tile for nEXO
A new design for the anode of a time projection chamber, consisting of a
charge-detecting "tile", is investigated for use in large scale liquid xenon
detectors. The tile is produced by depositing 60 orthogonal metal
charge-collecting strips, 3~mm wide, on a 10~\si{\cm} 10~\si{\cm}
fused-silica wafer. These charge tiles may be employed by large detectors, such
as the proposed tonne-scale nEXO experiment to search for neutrinoless
double-beta decay. Modular by design, an array of tiles can cover a sizable
area. The width of each strip is small compared to the size of the tile, so a
Frisch grid is not required. A grid-less, tiled anode design is beneficial for
an experiment such as nEXO, where a wire tensioning support structure and
Frisch grid might contribute radioactive backgrounds and would have to be
designed to accommodate cycling to cryogenic temperatures. The segmented anode
also reduces some degeneracies in signal reconstruction that arise in
large-area crossed-wire time projection chambers. A prototype tile was tested
in a cell containing liquid xenon. Very good agreement is achieved between the
measured ionization spectrum of a Bi source and simulations that
include the microphysics of recombination in xenon and a detailed modeling of
the electrostatic field of the detector. An energy resolution =5.5\%
is observed at 570~\si{keV}, comparable to the best intrinsic ionization-only
resolution reported in literature for liquid xenon at 936~V/\si{cm}.Comment: 18 pages, 13 figures, as publishe
- …