111,552 research outputs found
Growth of Epitaxial Oxide Thin Films on Graphene
The transfer process of graphene onto the surface of oxide substrates is well known. However, for many devices, we require high quality oxide thin films on the surface of graphene. This step is not understood. It is not clear why the oxide should adopt the epitaxy of the underlying oxide layer when it is deposited on graphene where there is no lattice match. To date there has been no explanation or suggestion of mechanisms which clarify this step. Here we show a mechanism, supported by first principles simulation and structural characterisation results, for the growth of oxide thin films on graphene. We describe the growth of epitaxial SrTiO3 (STO) thin films on a graphene and show that local defects in the graphene layer (e.g. grain boundaries) act as bridgepillar spots that enable the epitaxial growth of STO thin films on the surface of the graphene layer. This study, and in particular the suggestion of a mechanism for epitaxial growth of oxides on graphene, offers new directions to exploit the development of oxide/graphene multilayer structures and devices
SERS Detection of Graphene Oxide in Acid Catalyzed Sol-Gels
Silica sol-gel and aerogel substrates were synthesized using a modified acid catalyzed hydrolysis of tetramethyl orthosilicate method that incorporated graphene oxide and silver nanoparticles into the matrix. The effectiveness of loading of graphene oxide was monitored by UV-vis and surface enhanced Raman spectroscopy (SERS). Characterization data suggests that graphene oxide is detectable through SERS while integrated into a sol-gel and that size of silver nanoparticles has an impact on the SERS spectrum of graphene oxide
Transfer of Graphene with Protective Oxide Layers
Transfer of graphene, grown by Chemical Vapor Deposition (CVD), to a
substrate of choice, typically involves deposition of a polymeric layer
(typically, poly(methyl methacrylate, PMMA or polydimethylsiloxane, PDMS).
These polymers are quite hard to remove without leaving some residues behind.
Here we study a transfer of graphene with a protective thin oxide layer. The
thin oxide layer is grown by Atomic Deposition Layer (ALD) on the graphene
right after the growth stage on Cu foils. One can further aid the
oxide-graphene transfer by depositing a very thin polymer layer on top of the
composite (much thinner than the usual thickness) following by a more
aggressive polymeric removal methods, thus leaving the graphene intact. We
report on the nucleation growth process of alumina and hafnia films on the
graphene, their resulting strain and on their optical transmission. We suggest
that hafnia is a better oxide to coat the graphene than alumina in terms of
uniformity and defects.Comment: 13 pgs, 13 figure
Recommended from our members
Stability of Graphene Oxide encapsulated Gold Nanorods for optical sensing purposes
This paper presents the synthesis and characterization of a graphene oxide encapsulated gold nanorod (GNR) complex, where its stability was investigated over time by recording the absorption spectra obtained using a UV/Visible spectrometer over the wavelength region of 200 nm to 1000 nm. Poly Ethylene Glycol (PEG) stablized GNRs were found to be more stable in the presence of graphene oxide dispersions compared to Cetyl Timethyl Ammonium Bromide (CTAB) stabilized GNRs. These GNR complexes, prepared with an active graphene oxide coating on the surface, are presented as a well-suited platform for the development of localized plasmon resonance-based fibre optic biosensors due to the surface functional groups of graphene oxide that can form bio-composites with other biological nanomaterials
Utilization of multiple graphene layers in fuel cells. 1. An improved technique for the exfoliation of graphene-based nanosheets from graphite
An improved, safer and mild method was proposed for the exfoliation of graphene like sheets from graphite to be used in fuel cells. The major aim in the proposed method is to reduce the number of layers in the graphite material and to produce large quantities of graphene bundles to be used as catalyst support in polymer electrolyte membrane fuel cells. Graphite oxide was prepared using potassium dichromate/sulfuric acid as oxidant and acetic anhydride as intercalating agent. The oxidation process seemed to create expanded and leafy structures of graphite oxide layers. Heat treatment of samples led to the thermal decomposition of acetic anhydride into carbondioxide and water vapor which further swelled the layered graphitic structure. Sonication of graphite oxide samples created more separated structures. Morphology of the sonicated graphite oxide samples exhibited expanded the layer structures and formed some tullelike translucent and crumpled graphite oxide sheets. The mild procedure applied was capable of reducing the average number of graphene sheets from 86 in the raw graphite to nine in graphene-based nanosheets. Raman spectroscopy analysis showed the significant reduction in size of the in-plane sp2 domains
of graphene nanosheets obtained after the reduction of graphite oxide
- …