357,875 research outputs found

    Genome-Wide Identification of bZIP

    Get PDF

    Genome-wide identification of enhancer elements

    Get PDF
    We present a prospective genome-wide regulatory element database for the sea urchin embryo and the modified chromosome capture-related methodology used to create it. The method we developed is termed GRIP-seq for genome-wide regulatory element immunoprecipitation and combines features of chromosome conformation capture, chromatin immunoprecipitation, and paired-end next-generation sequencing with molecular steps that enrich for active cis-regulatory elements associated with basal transcriptional machinery. The first GRIP-seq database, available to the community, comes from S. purpuratus 24 hpf embryos and takes advantage of the extremely well-characterized cis-regulatory elements in this system for validation. In addition, using the GRIP-seq database, we identify and experimentally validate a novel, intronic cis-regulatory element at the onecut locus. We find GRIP-seq signal sensitively identifies active cis-regulatory elements with a high signal-to-noise ratio for both distal and intronic elements. This promising GRIP-seq protocol has the potential to address a rate-limiting step in resolving comprehensive, predictive network models in all systems

    FAIRE-seq data analysis of Chlamydomonas reinhardtii under carbon deprivation

    Get PDF
    For the genome-wide identification of nucleosome depleted regions under carbon deprivation, we analyze an available set of data from an assay of formaldehyde-assisted isolation of regulatory elements followed by sequencing (FAIRE-seq). Mapping to the sequenced nuclear genome of C.reinhardtii, followed by the identification of the enrichment-sequenced fragments was performed. We examined the location of these fragments relative to annotated genes. The related genes were associated to the corresponding Gene-Ontology (GO), for an evaluation of over-representate GO categories. Some genes, link with functions or locations, that have been previous described, indicating the success of the method finding carbon-metabolism related fragments

    Genome-wide analysis reveals extensive functional interaction between DNA replication initiation and transcription in the genome of trypanosoma brucei

    Get PDF
    Identification of replication initiation sites, termed origins, is a crucial step in understanding genome transmission in any organism. Transcription of the Trypanosoma brucei genome is highly unusual, with each chromosome comprising a few discrete transcription units. To understand how DNA replication occurs in the context of such organization, we have performed genome-wide mapping of the binding sites of the replication initiator ORC1/CDC6 and have identified replication origins, revealing that both localize to the boundaries of the transcription units. A remarkably small number of active origins is seen, whose spacing is greater than in any other eukaryote. We show that replication and transcription in T. brucei have a profound functional overlap, as reducing ORC1/CDC6 levels leads to genome-wide increases in mRNA levels arising from the boundaries of the transcription units. In addition, ORC1/CDC6 loss causes derepression of silent Variant Surface Glycoprotein genes, which are critical for host immune evasion

    A Novel Genome-Wide Association Study Approach Using Genotyping by Exome Sequencing Leads to the Identification of a Primary Open Angle Glaucoma Associated Inversion Disrupting ADAMTS17

    Get PDF
    Closed breeding populations in the dog in conjunction with advances in gene mapping and sequencing techniques facilitate mapping of autosomal recessive diseases and identification of novel disease-causing variants, often using unorthodox experimental designs. In our investigation we demonstrate successful mapping of the locus for primary open angle glaucoma in the Petit Basset Griffon Vendéen dog breed with 12 cases and 12 controls, using a novel genotyping by exome sequencing approach. The resulting genome-wide association signal was followed up by genome sequencing of an individual case, leading to the identification of an inversion with a breakpoint disrupting the ADAMTS17 gene. Genotyping of additional controls and expression analysis provide strong evidence that the inversion is disease causing. Evidence of cryptic splicing resulting in novel exon transcription as a consequence of the inversion in ADAMTS17 is identified through RNAseq experiments. This investigation demonstrates how a novel genotyping by exome sequencing approach can be used to map an autosomal recessive disorder in the dog, with the use of genome sequencing to facilitate identification of a disease-associated variant

    Genome-wide identification of direct HBx genomic targets

    Get PDF
    Background: The Hepatitis B Virus (HBV) HBx regulatory protein is required for HBV replication and involved in HBV-related carcinogenesis. HBx interacts with chromatin modifying enzymes and transcription factors to modulate histone post-translational modifications and to regulate viral cccDNA transcription and cellular gene expression. Aiming to identify genes and non-coding RNAs (ncRNAs) directly targeted by HBx, we performed a chromatin immunoprecipitation sequencing (ChIP-Seq) to analyse HBV recruitment on host cell chromatin in cells replicating HBV. Results: ChIP-Seq high throughput sequencing of HBx-bound fragments was used to obtain a high-resolution, unbiased, mapping of HBx binding sites across the genome in HBV replicating cells. Protein-coding genes and ncRNAs involved in cell metabolism, chromatin dynamics and cancer were enriched among HBx targets together with genes/ncRNAs known to modulate HBV replication. The direct transcriptional activation of genes/miRNAs that potentiate endocytosis (Ras-related in brain (RAB) GTPase family) and autophagy (autophagy related (ATG) genes, beclin-1, miR-33a) and the transcriptional repression of microRNAs (miR-138, miR-224, miR-576, miR-596) that directly target the HBV pgRNA and would inhibit HBV replication, contribute to HBx-mediated increase of HBV replication. Conclusions: Our ChIP-Seq analysis of HBx genome wide chromatin recruitment defined the repertoire of genes and ncRNAs directly targeted by HBx and led to the identification of new mechanisms by which HBx positively regulates cccDNA transcription and HBV replication

    Combining in silico prediction and ribosome profiling in a genome-wide search for novel putatively coding sORFs

    Get PDF
    Background: It was long assumed that proteins are at least 100 amino acids (AAs) long. Moreover, the detection of short translation products (e. g. coded from small Open Reading Frames, sORFs) is very difficult as the short length makes it hard to distinguish true coding ORFs from ORFs occurring by chance. Nevertheless, over the past few years many such non-canonical genes (with ORFs < 100 AAs) have been discovered in different organisms like Arabidopsis thaliana, Saccharomyces cerevisiae, and Drosophila melanogaster. Thanks to advances in sequencing, bioinformatics and computing power, it is now possible to scan the genome in unprecedented scrutiny, for example in a search of this type of small ORFs. Results: Using bioinformatics methods, we performed a systematic search for putatively functional sORFs in the Mus musculus genome. A genome-wide scan detected all sORFs which were subsequently analyzed for their coding potential, based on evolutionary conservation at the AA level, and ranked using a Support Vector Machine (SVM) learning model. The ranked sORFs are finally overlapped with ribosome profiling data, hinting to sORF translation. All candidates are visually inspected using an in-house developed genome browser. In this way dozens of highly conserved sORFs, targeted by ribosomes were identified in the mouse genome, putatively encoding micropeptides. Conclusion: Our combined genome-wide approach leads to the prediction of a comprehensive but manageable set of putatively coding sORFs, a very important first step towards the identification of a new class of bioactive peptides, called micropeptides
    corecore