1,326,788 research outputs found

    Spectral analysis of gene expression profiles using gene networks

    Full text link
    Microarrays have become extremely useful for analysing genetic phenomena, but establishing a relation between microarray analysis results (typically a list of genes) and their biological significance is often difficult. Currently, the standard approach is to map a posteriori the results onto gene networks to elucidate the functions perturbed at the level of pathways. However, integrating a priori knowledge of the gene networks could help in the statistical analysis of gene expression data and in their biological interpretation. Here we propose a method to integrate a priori the knowledge of a gene network in the analysis of gene expression data. The approach is based on the spectral decomposition of gene expression profiles with respect to the eigenfunctions of the graph, resulting in an attenuation of the high-frequency components of the expression profiles with respect to the topology of the graph. We show how to derive unsupervised and supervised classification algorithms of expression profiles, resulting in classifiers with biological relevance. We applied the method to the analysis of a set of expression profiles from irradiated and non-irradiated yeast strains. It performed at least as well as the usual classification but provides much more biologically relevant results and allows a direct biological interpretation

    Gene expression in large pedigrees: analytic approaches.

    Get PDF
    BackgroundWe currently have the ability to quantify transcript abundance of messenger RNA (mRNA), genome-wide, using microarray technologies. Analyzing genotype, phenotype and expression data from 20 pedigrees, the members of our Genetic Analysis Workshop (GAW) 19 gene expression group published 9 papers, tackling some timely and important problems and questions. To study the complexity and interrelationships of genetics and gene expression, we used established statistical tools, developed newer statistical tools, and developed and applied extensions to these tools.MethodsTo study gene expression correlations in the pedigree members (without incorporating genotype or trait data into the analysis), 2 papers used principal components analysis, weighted gene coexpression network analysis, meta-analyses, gene enrichment analyses, and linear mixed models. To explore the relationship between genetics and gene expression, 2 papers studied expression quantitative trait locus allelic heterogeneity through conditional association analyses, and epistasis through interaction analyses. A third paper assessed the feasibility of applying allele-specific binding to filter potential regulatory single-nucleotide polymorphisms (SNPs). Analytic approaches included linear mixed models based on measured genotypes in pedigrees, permutation tests, and covariance kernels. To incorporate both genotype and phenotype data with gene expression, 4 groups employed linear mixed models, nonparametric weighted U statistics, structural equation modeling, Bayesian unified frameworks, and multiple regression.Results and discussionRegarding the analysis of pedigree data, we found that gene expression is familial, indicating that at least 1 factor for pedigree membership or multiple factors for the degree of relationship should be included in analyses, and we developed a method to adjust for familiality prior to conducting weighted co-expression gene network analysis. For SNP association and conditional analyses, we found FaST-LMM (Factored Spectrally Transformed Linear Mixed Model) and SOLAR-MGA (Sequential Oligogenic Linkage Analysis Routines -Major Gene Analysis) have similar type 1 and type 2 errors and can be used almost interchangeably. To improve the power and precision of association tests, prior knowledge of DNase-I hypersensitivity sites or other relevant biological annotations can be incorporated into the analyses. On a biological level, eQTL (expression quantitative trait loci) are genetically complex, exhibiting both allelic heterogeneity and epistasis. Including both genotype and phenotype data together with measurements of gene expression was found to be generally advantageous in terms of generating improved levels of significance and in providing more interpretable biological models.ConclusionsPedigrees can be used to conduct analyses of and enhance gene expression studies

    Towards knowledge-based gene expression data mining

    Get PDF
    The field of gene expression data analysis has grown in the past few years from being purely data-centric to integrative, aiming at complementing microarray analysis with data and knowledge from diverse available sources. In this review, we report on the plethora of gene expression data mining techniques and focus on their evolution toward knowledge-based data analysis approaches. In particular, we discuss recent developments in gene expression-based analysis methods used in association and classification studies, phenotyping and reverse engineering of gene networks

    Generalized gene co-expression analysis via subspace clustering using low-rank representation

    Get PDF
    BACKGROUND: Gene Co-expression Network Analysis (GCNA) helps identify gene modules with potential biological functions and has become a popular method in bioinformatics and biomedical research. However, most current GCNA algorithms use correlation to build gene co-expression networks and identify modules with highly correlated genes. There is a need to look beyond correlation and identify gene modules using other similarity measures for finding novel biologically meaningful modules. RESULTS: We propose a new generalized gene co-expression analysis algorithm via subspace clustering that can identify biologically meaningful gene co-expression modules with genes that are not all highly correlated. We use low-rank representation to construct gene co-expression networks and local maximal quasi-clique merger to identify gene co-expression modules. We applied our method on three large microarray datasets and a single-cell RNA sequencing dataset. We demonstrate that our method can identify gene modules with different biological functions than current GCNA methods and find gene modules with prognostic values. CONCLUSIONS: The presented method takes advantage of subspace clustering to generate gene co-expression networks rather than using correlation as the similarity measure between genes. Our generalized GCNA method can provide new insights from gene expression datasets and serve as a complement to current GCNA algorithms

    Genetic Variation and Antioxidant Response Gene Expression in the Bronchial Airway Epithelium of Smokers at Risk for Lung Cancer

    Get PDF
    Prior microarray studies of smokers at high risk for lung cancer have demonstrated that heterogeneity in bronchial airway epithelial cell gene expression response to smoking can serve as an early diagnostic biomarker for lung cancer. As a first step in applying functional genomic analysis to population studies, we have examined the relationship between gene expression variation and genetic variation in a central molecular pathway (NRF2-mediated antioxidant response) associated with smoking exposure and lung cancer. We assessed global gene expression in histologically normal airway epithelial cells obtained at bronchoscopy from smokers who developed lung cancer (SC, n=20), smokers without lung cancer (SNC, n=24), and never smokers (NS, n=8). Functional enrichment analysis showed that the NRF2-mediated, antioxidant response element (ARE)-regulated genes, were significantly lower in SC, when compared with expression levels in SNC. Importantly, we found that the expression of MAFG (a binding partner of NRF2) was correlated with the expression of ARE genes, suggesting MAFG levels may limit target gene induction. Bioinformatically we identified single nucleotide polymorphisms (SNPs) in putative ARE genes and to test the impact of genetic variation, we genotyped these putative regulatory SNPs and other tag SNPs in selected NRF2 pathway genes. Sequencing MAFG locus, we identified 30 novel SNPs and two were associated with either gene expression or lung cancer status among smokers. This work demonstrates an analysis approach that integrates bioinformatics pathway and transcription factor binding site analysis with genotype, gene expression and disease status to identify SNPs that may be associated with individual differences in gene expression and/or cancer status in smokers. These polymorphisms might ultimately contribute to lung cancer risk via their effect on the airway gene expression response to tobacco-smoke exposure.Intramural Research Program of the National Institute of Environmental Health Sciences; National Institutes of Health (Z01 ES100475, U01ES016035, R01CA124640

    Gene Co-expression Network and Copy Number Variation Analyses Identify Transcription Factors Associated With Multiple Myeloma Progression

    Get PDF
    Multiple myeloma (MM) has two clinical precursor stages of disease: monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM). However, the mechanism of progression is not well understood. Because gene co-expression network analysis is a well-known method for discovering new gene functions and regulatory relationships, we utilized this framework to conduct differential co-expression analysis to identify interesting transcription factors (TFs) in two publicly available datasets. We then used copy number variation (CNV) data from a third public dataset to validate these TFs. First, we identified co-expressed gene modules in two publicly available datasets each containing three conditions: normal, MGUS, and SMM. These modules were assessed for condition-specific gene expression, and then enrichment analysis was conducted on condition-specific modules to identify their biological function and upstream TFs. TFs were assessed for differential gene expression between normal and MM precursors, then validated with CNV analysis to identify candidate genes. Functional enrichment analysis reaffirmed known functional categories in MM pathology, the main one relating to immune function. Enrichment analysis revealed a handful of differentially expressed TFs between normal and either MGUS or SMM in gene expression and/or CNV. Overall, we identified four genes of interest (MAX, TCF4, ZNF148, and ZNF281) that aid in our understanding of MM initiation and progression
    • …
    corecore