328,821 research outputs found

    Analysis of vibration and acoustic signals for noncontact measurement of engine rotation speed

    Get PDF
    The non-contact measurement of engine speed can be realized by analyzing engine vibration frequency. However, the vibration signal is distorted by harmonics and noise in the measurement. This paper presents a novel method for the measurement of engine rotation speed by using the cross-correlation of vibration and acoustic signals. This method can enhance the same frequency components in engine vibration and acoustic signal. After cross-correlation processing, the energy centrobaric correction method is applied to estimate the accurate frequency of the engine's vibration. This method can be implemented with a low-cost embedded system estimating the cross-correlation. Test results showed that this method outperformed the traditional vibration-based measurement method.Web of Science203art. no. 68

    Strategies for increasing the operating frequency range of vibration energy harvesters: a review

    No full text
    This paper reviews possible strategies to increase the operational frequency range of vibration-based micro-generators. Most vibration-based micro-generators are spring-mass-damper systems which generate maximum power when the resonant frequency of the generator matches the frequency of the ambient vibration. Any difference between these two frequencies can result in a significant decrease in generated power. This is a fundamental limitation of resonant vibration generators which restricts their capability in real applications. Possible solutions include the periodic tuning of the resonant frequency of the generator so that it matches the frequency of the ambient vibration at all times or widening the bandwidth of the generator. Periodic tuning can be achieved using mechanical or electrical methods. Bandwidth widening can be achieved using a generator array, a mechanical stopper, non-linear (e.g. magnetic) springs or bi-stable structures. Tuning methods can be classified into intermittent tuning (power is consumed periodically to tune the device) and continuous tuning (the tuning mechanism is continuously powered). This paper presents a comprehensive review of the principles and operating strategies for increasing the operating frequency range of vibration-based micro-generators presented in the literature to date. The advantages and disadvantages of each strategy are evaluated and conclusions are drawn regarding the relevant merits of each approach

    The transmissibility of vibration isolators with a nonlinear anti-symmetric damping characteristic

    Get PDF
    In the present study, the concept of the Output Frequency Response Function (OFRF), recently proposed by the authors, is applied to theoretically investigate the transmissibility of SDOF passive vibration isolators with a nonlinear anti-symmetric damping curve. The results reveal that a nonlinear anti-symmetric damping characteristic has almost no effect on the transmissibility of SDOF vibration isolators over both low and high frequency ranges where the frequencies are much lower or higher than the isolator’s resonant frequency. On the other hand, the introduction of a nonlinear anti-symmetric damping can significantly reduce the transmissibility of the vibration isolator over the resonant frequency region. The results indicate that nonlinear vibration isolators with an anti-symmetric damping characteristic have great potential to overcome the dilemma encountered in the design of passive linear vibration isolators, that is, increasing the level of damping to reduce the transmissibility at the resonance could increase the transmissibility over the range of higher frequencies. These important theoretical conclusions are then verified by simulation studies

    Vibration-Induced Conductivity Fluctuation (VICOF) Testing of Soils

    Full text link
    In this Letter, we propose and experimentally demonstrate a simple method to provide additional in-formation by conductivity measurements of soils. The AC electrical conductance of the soil is measured while it is exposed to a periodic vibration. The vibration-induced density fluctuation implies a corresponding conductivity fluctuation that can be seen as combination frequency components, the sum and the difference of the mean AC frequency and the double of vibration frequency, in the current response. The method is demonstrated by measurements on clayey and sandy soils

    Phase-resolved heterodyne holographic vibrometry with a strobe local oscillator

    Get PDF
    We report a demonstration of phase-resolved vibrometry, in which out-of-plane sinusoidal motion is assessed by heterodyne holography. In heterodyne holography, the beam in the reference channel is an optical local oscillator (LO). It is frequency-shifted with respect to the illumination beam to enable frequency conversion within the sensor bandwidth. The proposed scheme introduces a strobe LO, where the reference beam is frequency-shifted and modulated in amplitude, to alleviate the issue of phase retrieval. The strobe LO is both tuned around the first optical modulation side band at the vibration frequency, and modulated in amplitude to freeze selected mechanical vibration states sequentially. The phase map of the vibration can then be derived from the demodulation of successive vibration states

    Finite element modelling of fixed-fixed end plate attached with vibration absorber

    Get PDF
    The present paper investigated the effect of the lightweight dynamic vibration absorber (LDVA) to reduce vibration of thin walled structure. The free and forced vibration response of a rectangular thin plate were performed using finite element method. Subsequently, the effects of attached single and dual LDVA were analysed in depth by using Ansys workbench 14.5. Results demonstrated that single LDVA attached at the centre of the plate succesfully attenuate vibration over the frequency range of 0- 600 Hz. By contrast, attached with dual LDVA only suppresses the resonance of the first second and fourth modes but not for third and fifth modes of thin walled structure. It was found that by simply increasing the weight of mass does not improve the vibration absorption over the entire frequency range. The study conclude that attached single LDVA are better than dual LDVA for vibration absorption of thin walled structure over the entire frequency range

    Non-linear dependency of the subjective perceived intensity of steering wheel rotational vibration

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2009 ElsevierThe present study has established equal sensation curves for steering wheel hand-arm rotational vibration. Psychophysical response tests of 20 participants were performed in a steering wheel rotational vibration simulator using the category-ratio Borg CR10 scale procedure for direct estimation of perceived vibration intensity. The test stimuli used were sinusoidal vibrations at 22 third octave band centre frequencies in the range from 3 to 400 Hz, with acceleration amplitudes in the range from 0.06 to 30 m/s(2) r.m.s. A multivariate regression analysis was performed on the mean perceived intensity Borg CR10 values as a function of the two independent parameters of the vibration frequency and amplitude. The results suggested a non-linear dependency of the subjective perceived intensity on both the steering wheel rotational vibration frequency and amplitude. The equal sensation curves were found to be characterised by a decreased sensitivity to hand-arm vibration with increasing frequency from 10 to 400 Hz, but by an increased sensitivity with increasing frequency from 4 to 10 Hz. A 6th order polynomial model has been proposed as a best fit regression model from which the equal sensation curves for steering wheel rotational vibration are derived.Relevance to industry: For the manufactures of automobiles, steering systems and other automobile components this study provides a mathematical model from which one or more new frequency weightings for the use in evaluating the perceived intensity of steering wheel rotational vibration are derived. (C) 2008 Elsevier B.V. All rights reserved

    Vibration simulator studies for the development of passenger ride comfort criteria

    Get PDF
    A test program to determine the total discomfort associated with vehicle vibration is described. The program utilizes a three-degree-of-freedom vibration simulator to determine the effects of multifrequency and multiaxis vibration inputs. The approach to multifrequency vibration includes a separate consideration of the discomfort associated with each frequency component or band of the total spectrum and a subsequent empirical weighting of the discomfort components of these frequency bands when in various random combinations. The results are in the form of equal discomfort curves that specify the discomfort associated with discrete frequencies between 1 and 30 Hz and different acceleration levels. These results provide detailed information of the human discomfort response to increases in acceleration level for each frequency investigated. More importantly, the results provide a method for adding the discomfort associated with separate frequencies to give a total typification of the discomfort of a random spectrum of vibration

    The effects of absorber attachment location on vibration response of simply supported plate

    Get PDF
    Vibration analysis of thin walled structure has been an active research in engineering fields. This paper proposed to investigate the application of vibration absorber (VA) attached to the simply supported plate (SSP) in order to suppress the structural vibration. Two major factors influence on vibration reduction of late are investigated in term of the attachment location of vibration absorber and the number of absorber applied on structural dynamic of the plate. Finite element software of ANSYS APDL was performed to measure the dynamic response of plate. The results found that the best positioning vibration absorber are at the location of 0.35 m of x-axis and 0.40 m of y-axis which can attenuate the vibration along the frequency band. Numerical result also presented that when attached multiple absorber, the vibration reduction of plate provide larger suppression to SSP which average reduction almost 80% over the frequency modes. This study conclude that right position and number of absorber can be the major contribute to suppress vibration on a plate structure more effectively
    corecore